TN-8

REMOTE ELECTRONIC CONDITION MONITORING UTILIZING PCB® SANITARY DYNAMIC PRESSURE SENSORS
Remote electronic condition monitoring utilizing PCB sanitary dynamic pressure sensors

The Grall Company, Inc., based in Lemont, Illinois, has collaborated with PCB Piezotronics to design custom dynamic pressure sensors for use in sanitary/hygienic applications. Coupled with a dynamic signal analyzer and automated event capture software, the status of machine health can be continuously monitored. This technology was recently deployed at a major beverage processing facility. A high-speed timing pump was fitted with pulsation dampening equipment to reduce vibration. The diagnostic system, utilizing PCB dynamic pressure sensors, measures dynamic suction and discharge pressure waves both prior to and after dampening. Statistical anomalies present within the stream of data for each sensor trigger an event. Data from the event is captured and sent via the internet for analysis.

This technology is applicable to any industry where the idea of continuous monitoring with automated event capturing of dynamic data is desired. Applications include fluid dynamics, heat transfer, mixing, valve action, machine vibration, and leak detection among others. Continuous monitoring enhances predictive maintenance as well as continuous process improvement. With remote capabilities, analysis can be done virtually anywhere eliminating the need to travel on-site to obtain critical process measurements.

- Within the first weeks of monitoring, The Grall Company was able to identify events whose data signatures were the result of air being pushed through the system. A change in valve sequencing eliminated this problem thus decreasing the probability for premature failure of pump, instruments, and piping.
- Additionally, monitoring has identified excessive product/water transitions prompting a review of the process timing and research into alternative transition detection devices.
- Further, monitoring is allowing the move from preventative maintenance to predictive maintenance ultimately resulting in reduced labor, spare parts inventory and downtime.
Signature of pulsations of a captured event of less than 20 seconds duration.

Block diagram of system setup.
MTS Sensors, a division of MTS Systems Corporation (NASDAQ: MTSC), vastly expanded its range of products and solutions after MTS acquired PCB Piezotronics, Inc. in July, 2016. PCB Piezotronics, Inc. is a wholly owned subsidiary of MTS Systems Corp.; IMI Sensors and Larson Davis are divisions of PCB Piezotronics, Inc.; Accumetrics, Inc. and The Modal Shop, Inc. are subsidiaries of PCB Piezotronics, Inc.

PCB Piezotronics, Inc. is a designer and manufacturer of microphones, vibration, pressure, force, torque, load, and strain sensors, as well as the pioneer of ICP® technology used by design engineers and predictive maintenance professionals worldwide for test, measurement, monitoring, and control requirements in automotive, aerospace, industrial, R&D, military, educational, commercial, OEM applications, and more. With a worldwide customer support team, 24-hour SensorLineSM, and a global distribution network, PCB® is committed to Total Customer Satisfaction. Visit www.pcb.com for more information. PCB Piezotronics, Inc. is a wholly owned subsidiary of MTS Systems Corporation. Additional information on MTS can be found at www.mts.com.

© 2019 PCB Piezotronics, Inc. In the interest of constant product improvement, specifications are subject to change without notice. PCB®, ICP®, Swiveler®, Modally Tuned®, and IMI® with associated logos are registered trademarks of PCB Piezotronics, Inc. in the United States. ICP® is a registered trademark of PCB Piezotronics Europe GmbH in Germany and other countries. SWIFT® is a registered trademark of MTS Systems Corporation in the United States.

TN_8_0219