ACCELEROMETERS & MICROPHONES FOR RAIL APPLICATIONS
PCB’s ability to customize our sensors to meet the exact needs of our rail customers, has enabled PCB to exceed our customers expectations. With tens of thousands of sensors used in rail applications world-wide, PCB can achieve the high standards required for rail monitoring, along with sensor solutions for complex applications.

PCB Piezotronics’ Quality System meets the requirements of AS9100:2016 QMS Certified by DQS, Inc. and ISO 9001:2015 QMS Certified by DQS, Inc.

PCB® maintains an A2LA ISO/IEC 17025 certified calibration laboratory.
Bogie system monitoring is used to monitor the vibration of trains, and depending on the location, can be used for preventative maintenance, early detection of failure, bogie hunting, and ride quality. Bogie system monitoring is an essential component to train maintenance, which ensures that parameters such as the wear within the bearings, shafts, brakes, and wheels are identified and properly monitored. This allows repair work to be scheduled efficiently, drive down maintenance costs, and prevent potential instabilities that may cause an accident.

Condition monitoring offers opportunities to increase reliability and safety, and to achieve lower maintenance costs. Using condition detection systems and applying detailed algorithms for data processing can detect early damage and allow time for repairs before a mechanical failure occurs. Expenses will be saved in the long term with maintenance being scheduled during non-peak times to increase vehicle reliability.

Derailment prevention of high speed passenger trains is a extremely important safety system that uses very complex algorithms to detect irregular oscillations, when transmitted to the operator or automatically shutdown the system. The requirement for safety monitoring creates the need to make a real-time decision based on provided data.

Passenger ride quality is an important factor in rider comfort. Track irregularities are transmitted to the passenger and their frequency and amplitude (especially laterally) must be measured to determine the effect on comfort quality. PCB has sensors and microphones that can be used to measure these characteristics.
Rail systems use specially developed accelerometers for monitoring that meet strict environmental and safety standards. PCB designs rail accelerometers using the optimum technology type to meet the needs of the application. Industrial type sensors are used in these rail applications as the construction of these sensors are ideal for the rail environment which covers a wide range of ambient conditions. In addition to the below stock accelerometers, PCB is able to provide custom accelerometers with TEDS, surge protection, frequency filtering, electrical isolation, as well as specialized cables that meet specific environmental and rail standards.

VIBRATION

LOW PROFILE, INDUSTRIAL, ICP® ACCELEROMETER
MODEL 602D11

- Sensitivity: (±10%) 100 mV/g (10.2 mV/(m/s²))
- Measurement Range: ±50 g (±490 m/s²)
- Frequency Range: (±3dB) 0.5 to 8000 Hz

GENERAL PURPOSE, INDUSTRIAL, ICP® ACCELEROMETER
MODEL 603C01

- Sensitivity: (±10%) 100 mV/g (10.2 mV/(m/s²))
- Measurement Range: ±50 g (±490 m/s²)
- Frequency Range: (±3dB) 0.5 to 10000 Hz

RING-STYLE, INDUSTRIAL, ICP® ACCELEROMETER
MODEL 606B01

- Sensitivity: (±20%) 100 mV/g (10.2 mV/(m/s²))
- Measurement Range: ±50 g (±490 m/s²)
- Frequency Range: (±3dB) 0.5 to 10000 Hz

LOW PROFILE INDUSTRIAL ICP® ACCELEROMETER
MODEL 607A61

- Sensitivity: (±15%) 100 mV/g (10.2 mV/(m/s²))
- Measurement Range: ±50 g (±490 m/s²)
- Frequency Range: (±3dB) 0.5 to 10000 Hz

MODAL ARRAY, ICP® ACCELEROMETER
MODEL 333B40

- Sensitivity: (±10%) 500 mV/g (51.0 mV/(m/s²))
- Measurement Range: ±10 g pk (±98 m/s² pk)
- Frequency Range: (±5%) 0.5 to 3000 Hz

TRIAXIAL ICP® SEAT PAD ACCELEROMETER
MODEL 356B41

- Sensitivity: (±10%) 100 mV/g (10.2 mV/(m/s²))
- Measurement Range: ±10 g pk (±98 m/s² pk)
- Frequency Range: (±5%) 0.5 to 1000 Hz
<table>
<thead>
<tr>
<th>Category</th>
<th>Model</th>
<th>Sensitivity</th>
<th>Measurement Range</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS DC Accelerometers</td>
<td>3711F</td>
<td>±3% 6.75 mV/g (68.8 mV/(m/s²)) to 6.75 mV/g (0.69 mV/(m/s²))</td>
<td>±2 g pk(±19.6 m/s² pk) to ±200 g pk(±1962 m/s² pk)</td>
<td>±5% 0 to 250 Hz to 0 to 1500 Hz</td>
</tr>
<tr>
<td>TRIAXIAL MEMS DC Accelerometers</td>
<td>3713F</td>
<td>±3% 6.75 mV/g (68.8 mV/(m/s²)) to 6.75 mV/g (0.69 mV/(m/s²))</td>
<td>±2 g pk(±19.6 m/s² pk) to ±200 g pk(±1962 m/s² pk)</td>
<td>±5% 0 to 250 Hz to 0 to 1500 Hz</td>
</tr>
<tr>
<td>DIFFERENTIAL MEMS DC Accelerometers</td>
<td>3741F</td>
<td>±3% 13.5 mV/g (1.38 mV/(m/s²)) to 1350 mV/g (137.6 mV/(m/s²))</td>
<td>±2 g pk(±19.6 m/s² pk) to ±200 g pk(±1962 m/s² pk)</td>
<td>±5% 0 to 250 Hz to 0 to 1000 Hz</td>
</tr>
<tr>
<td>TRIAXIAL, General Purpose, ICP® Accelerometer</td>
<td>356A02</td>
<td>±10% 10 mV/g (1.02 mV/(m/s²))</td>
<td>±500 g pk (±4900 m/s² pk) (±490 m/s²)</td>
<td>±5% 1 to 5000 Hz</td>
</tr>
<tr>
<td>TRIAXIAL, ICP® Accelerometer</td>
<td>356A66</td>
<td>±10% 10 mV/g (1.02 mV/(m/s²))</td>
<td>±500 g pk (±4900 m/s² pk) (±490 m/s²)</td>
<td>±5% 2 to 4000 Hz</td>
</tr>
<tr>
<td>LOW COST EMBEDDABLE Accelerometer</td>
<td>RHHT6102APZ1</td>
<td>±20% 10 mV/g (1.02 mV/(m/s²))</td>
<td>±500 g pk (±5000 m/s²)</td>
<td>±5% 0.5 to 5k Hz</td>
</tr>
</tbody>
</table>
RIDE QUALITY

PCB microphones can be used to measure acoustic fields within and around train cars. Customer satisfaction and overall ride quality are directly tied to the types of noises an individual may experience during their trip. PCB microphones meet all applicable IEC standards for test and measurement microphones, and have excellent frequency and amplitude response to ensure accurate measurements in a wide variety of rail applications.

1/4" FREE-FIELD ICP® ARRAY MICROPHONE SYSTEM

MODEL 130F20
- Low Noise Floor: 24 dBA
- Frequency Range: 10 Hz - 20 kHz (±4 dB)
- Electrical Connector: BNC Jack (Typical)

MODEL 130F21
- Low Noise Floor: 24 dBA
- Frequency Range: 10 Hz - 20 kHz (±4 dB)
- Electrical Connector: 10-31 coaxial jack

MODEL 130F22
- Low Noise Floor: 24 dBA
- Frequency Range: 10 Hz - 20 kHz (±4 dB)
- Electrical Connector: SMB coaxial socket

1/2" WATER AND DUST RESISTANT ICP® MICROPHONE SYSTEM

MODEL 130A24
- Sensitivity: 10 mV/Pa
- Frequency Range: 20 Hz - 16 kHz (±3 dB)
- IP55 Rated for harsh environments

1/2" LOW NOISE ICP® PREPOLARIZED MICROPHONE SYSTEM

MODEL 378A04
- Less than 6.5 dBA noise floor
- Frequency Range: 5 Hz to 20 kHz
- High sensitivity, 450 mV/Pa
- Electrical connector: BNC Jack

MODEL 378B02
- Sensitivity: 50 mV/Pa
- Frequency Range: 3.75 Hz – 20 kHz
- Dynamic Range: 137 dB re 20 µPa (± 2 dB) (Typical)

1/2" FREE-FIELD ICP® MICROPHONE SYSTEM

MODEL 130B40
- Sensitivity: (±3 dB) 8.5 mV/Pa
- Dynamic Range: 150 dB before clipping
- Electrical Connector: 10-32 Coaxial plug

SURFACE MICROPHONE

MODEL 130B40
- Sensitivity: (±3 dB) 8.5 mV/Pa
- Dynamic Range: 150 dB before clipping
- Electrical Connector: 10-32 Coaxial plug
Controlling and monitoring railway and train noise in residential and urban areas is critical. Outdoor noise monitoring systems allow you to gather the data needed to ensure you are being a good neighbor.

NOISE MONITORING

SOUNDADVISOR™ PORTABLE NOISE MONITORING
MODEL NMS044

- Remote 24/7 monitoring
- Easy deployment in the field
- Solar power options
- Real-time exceedance and event alerts