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Amplitude linearity is a measure of how linear the output of an accelerometer is over its specified amplitude 
range. It is sometimes called amplitude non-linearity, since it specifies the deviation from perfect linearity.  
Manufacturers of accelerometers typically rely on several methods to measure non-linearity of the device.  Here 
are three commonly used test apparatus and their physical characteristics:

1. Static Method - Centrifuge

• This is applicable only to accelerometers with DC response
• Test under static condition (one-sided loading)
• Input level is very accurate and controllable
• Max g level is only limited by the speed of the centrifuge
• Excitation frequency is at zero Hertz (static)

2. Sinusoidal Method - Electrodynamic shaker (suitable for only lower range devices)

• Excitation frequency is at zero Hertz (static)
• Test under dynamic condition (positive and negative loading)
• Input level is repeatable and controllable
• Max g level limited by the shaker (typically no more than 100 g)
• Excitation frequency is shaker dependent

3. Impulse Method - Pneumatic driven projectile (suitable for higher range devices)

• This is applicable to accelerometers with AC or DC response
• Test based on an impulse (one-sided loading)
• Input level is not well controlled
• Max g level limited by the velocity and the weight of the projectile
• Excitation frequency is dependent on the pulse width of the impact and the shape of the contact patch



With a typical accelerometer (undamped), measuring non-linearity by any of the above test methods is feasible 
due to the broad frequency response of an undamped design (Figure 1).  In testing higher range accelerometers, 
impulse method is typically used due to its high acceleration capacity.  However, with a damped accelerometer 
of higher g range (>100g), the use of impulse method may present a practical challenge because of its inherent 
high frequency roll-off (Figure 2).
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present a practical challenge because of its inherent high frequency roll-off (Figure 2).  

To understand why this may be a problem in measuring non-linearity. Let’s first look at the input 
characteristics of the impulse method.  The physical construction of the impulse shock machine, 
typically a pneumatic driven projectile, determines the amount of energy available.  The shock pulse 
is a function of the amplitude (g) and pulse duration (t).  The maximum area under the pulse curve is 
fixed by the available energy of the machine.  In other words, a machine can either produce higher 
g with short pulse duration or lower g with long pulse duration.  To do both will require an impulse 
machine that is huge in size and complexity.

Figure 3 shows a typical input waveform created by a pneumatic driven projectile.  At lower shock 
level (<1,000g), the pulse width is relatively long.  Its frequency spectrum can be illustrated in Figure 4.
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