

S E R I E S 2 6 0 & 2 6 1

3-COMPONENT DYNAMIC FORCE SENSORS

Standard ranges available up to 10,000 lbf in the Z axis and 4000 lbf in the X and Y axis

Hermetically Sealed Stainless Steel Construction

ICP® and Charge Output Versions

Electrically Isolated

TYPICAL APPLICATIONS

Automotive Chassis and Other Vehicle Dynamic Measurements

Monitor Cutting Tool Forces and Detect Tool Wear

Provide Feedback for Force Limited Vibration Testing

Measure Input Forces for Modal Analysis and Structural Testing

Assess and Study Biomechanic Ability, Chart Therapy Progress

Monitor Machine and Engine Mounts for Imbalance or Looseness

Measure Impact Forces During Drop Testing and Crash Testing

CONDUCT SIMULTANEOUS FORCE MEASUREMENTS IN THREE ORTHOGONAL DIRECTIONS

Triaxial, ground isolated, dynamic force sensors are offered in both ICP® and charge output configurations for dynamic and quasi-static force measurement applications. Each utilizes an array of precision-aligned, quartz sensing crystals. Measurements along the z-axis are proportional to applied compression, tension and impact forces. Measurements along the x and y axes are proportional to shear forces that are imposed upon preloaded crystals by the test fixture.

ICP® models contain built-in microelectronic signal conditioning circuitry to provide clean, low-impedance output signals that can be transmitted over low cost cables and in adverse, industrial environments. Multi-pin connectors facilitate a single point hookup with common, multi-conductor cable. Charge output styles achieve higher temperature operation, and are suitable for applications requiring flexible setup and maximum signal-to-noise.

Versions are available with ranges up to 10,000 lb (45 kN) in the z-axis (perpendicular to top surface) and to 4000 lb (18 kN) in the x- and y-axes. Both ICP® and charge output styles are available. The 260 series is supplied with both an imperial and metric bolt. The 261 series is available with either imperial or metric mounting holes. The 260B and 261B series feature electrical isolation.

As with all PCB® instrumentation, these sensors are complemented with toll-free applications assistance, 24-hour customer service, and are backed by a no-risk policy that guarantees satisfaction or your money refunded.

3-COMPONENT ICP® AND CHARGE OUTPUT QUARTZ FORCE RING STYLES

Model 260B01

Model 260B02

Model 260B03

Model 260B11

Model 260B12

Model 260B13

TRIAXIAL, GROUND ISOLATED, QUARTZ FORCE SENSORS														
Model Number	ICP®				Charge									
	260B01	260B02	260B03	260B11	260B12	260B13								
Performance														
Compression or Tension Range (z-axis)	lb (N)	1000 (4450)	1000 (4450)	10k (45k)	1000 (4450)	1000 (4450)	10k (45k)							
Shear Range (x-, y-axis)	lb (N)	500 (2220)	1000 (4450)	4000 (18k)	500 (2220)	1000 (4450)	4000 (18k)							
Maximum Compression or Tension (z-axis)	lb (N)	1320 (5870)	1320 (5870)	11k (49k)	1320 (5870)	1320 (5870)	11k (49k)							
Maximum Shear (x-, y-axis)	lb (N)	660 (2940)	1100 (4890)	4400 (20k)	660 (2940)	1100 (4890)	4400 (20k)							
Sensitivity ($\pm 20\%$) (z-axis)	–	2.5 mV/lb 0.56 mV/N	2.5 mV/lb 0.56 mV/N	0.25 mV/lb 0.06 mV/N	15 pC/lb 3.4 pC/N									
Sensitivity ($\pm 20\%$) (x-, y-axis)	–	10 mV/lb 2.25 mV/N	5 mV/lb 1.12 mV/N	1.25 mV/lb 0.28 mV/N	32 pC/lb 7.2 pC/N									
Resolution (broadband) (z-axis) (x-, y-axis)	lb (N) rms	0.006 (0.027) 0.002 (0.009)	0.005 (0.022) 0.003 (0.013)	0.05 (0.22) 0.01 (0.045)	see note [2]									
Amplitude Linearity	% FS	≤ 1												
Cross-Talk $F_x \div F_y$ $F_x, F_y \div F_z$	%	± 3 ± 5												
Low Frequency Response (-5%) (z-axis) (x-, y-axis)	Hz	0.01 0.001		see note [2]										
Environmental Specifications														
Temperature Range	°F °C	-65 to +250 -54 to +121			-100 to +350 -73 to +177									
Electrical Specifications														
Discharge Time Constant [1] (z-axis) (x-, y-axis)	seconds	≥ 50 ≥ 500		see note [2]										
Output Impedance	ohm	≤ 100												
Output Bias Voltage	+VDC	8 to 14												
Voltage Excitation	+VDC	20 to 30												
Constant Current Excitation	mA	2 to 20												
Capacitance (all axes)	pF	N/A		18	30	70								
Insulation Resistance	ohm	N/A												
Electrical Isolation	ohm	$\geq 10^8$												
Polarity (in direction of markings)		positive		negative										
Physical Specifications														
Recommended Pre-Load [3]	lb (N)	5000 (22k)	10k (44.5k)	40k (178k)	5000 (22k)	10k (44.5k)	40k (178k)							
Connector	type	4-pin Jack			(3) 10-32 Jack									
Stiffness (z-axis) (x-, y-axis)	lb/ μ in (kN/ μ m)	10 (1.75) 2.5 (0.440)	19 (3.3) 6 (1.0)	39 (7) 11 (2)	10 (1.75) 2.5 (0.440)	19 (3.3) 6 (1.0)	39 (7) 11 (2)							
Sealing	type	hermetic weld												
Material	type	17-4 stainless steel												
Maximum Moment (z-axis)	ft-lb (N-m)	16 (21.7)	58 (78.6)	375 (508.4)	16 (21.7)	58 (78.6)	375 (508.4)							
Maximum Moment (x-, y-axis)	ft-lb (N-m)	37 (50.2)	96 (130.2)	940 (1274.5)	37 (50.2)	96 (130.2)	940 (1274.5)							
Weight	oz (gm)	0.94 (27)	1.59 (45)	9.6 (271)	0.87 (24.6)	1.5 (42.5)	9.9 (280)							
Supplied Accessories														
Mounting Stud (beryllium-copper)	model	081A70 M081A70	081A74 M081A74	081A71 M081A71	081A70 M081A70	081A74 M081A74	081A71 M081A71							
Mounting Stud Thread	size	5/16-24 M8x1.25	1/2-20 M12x1.25	7/8-14 M24x3	5/16-24 M8x1.25	1/2-20 M12x1.25	7/8-14 M24x3							
Anti-Friction Washer	model	082B02	082M12	082B06	082B02	082M12	082B06							
Pilot Bushing	model	083A10	083A13	083A11	083A10	083A13	083A11							
Optional Models														
Reverse Shear Polarity	model	–		260B31	260B32	260B33								

Notes: [1] The Discharge Time Constant (DTC) determines low frequency response according to the relationship $f-5\% = 3/(2\pi(DTC))$. Sensors accurately follow transient events lasting a few percent of the DTC. For square wave events, the DTC should be 100 times the event duration. For ramp shape events, the DTC should be 50 times the event duration and for a half sine pulse the DTC should be 25 times the pulse duration. To ensure measurement system compatibility, use DC coupled or Long Time Constant signal conditioners for long duration transient measurements. [2] Resolution, System Discharge Time Constant and Low Frequency range are dependent upon sensor cable and signal conditioning used. [3] Recommended pre-load is required to meet published specification and calibration.

3-COMPONENT ICP® AND CHARGE OUTPUT FORCE LINK STYLES

TRIAXIAL, GROUND ISOLATED, QUARTZ FORCE LINKS

Model Number	ICP®			Charge							
	261B01	261B02	261B03	261B11	261B12	261B13					
Performance											
Compression or Tension Range (z-axis)	lb (N)	1000 (4450)	1000 (4450)	10k (45k)	1000 (4450)	1000 (4450)					
Shear Range (x-, y-axis)	lb (N)	500 (2220)	1000 (4450)	4000 (18k)	500 (2220)	1000 (4450)					
Maximum Compression or Tension (z-axis)	lb (N)	1320 (5870)	1320 (5870)	11k (49k)	1320 (5870)	1320 (5870)					
Maximum Shear (x-, y-axis)	lb (N)	660 (2940)	1000 (4890)	4400 (20k)	660 (2940)	1100 (4890)					
Sensitivity ($\pm 20\%$) (z-axis)	–	2.5 mV/lb 0.56 mV/N	2.5 mV/lb 0.56 mV/N	0.25 mV/lb 0.06 mV/N	15 pC/lb 3.4 pC/N						
Sensitivity ($\pm 20\%$) (x-, y-axis)	–	10 mV/lb 2.25 mV/N	5 mV/lb 1.1 mV/N	1.25 mV/lb 0.28 mV/N	32 pC/lb 7.2 pC/N						
Resolution (broadband) (z-axis) (x-, y-axis)	lb (N) rms	0.006 (0.027) 0.002 (0.009)	0.005 (0.022) 0.003 (0.013)	0.05 (0.222) 0.01 (0.040)	see note [2]						
Amplitude Linearity	% FS	≤ 1									
Cross-Talk $F_x \div F_y$ $F_x, F_y \div F_z$	% %	± 3 ± 5									
Low Frequency Response (-5%) (z-axis) (x-, y-axis)	Hz Hz	0.01 0.001		see note [2]							
Environmental Specifications											
Temperature Range	°F °C	-65 to +250 -54 to +121			-100 to +350 -73 to +177						
Electrical Specifications											
Discharge Time Constant [1] (z-axis) (x-, y-axis)	seconds	≥ 50 ≥ 500		see note [2]							
Output Impedance	ohm	≤ 100									
Output Bias Voltage	+VDC	8 to 14									
Voltage Excitation	+VDC	20 to 30									
Constant Current Excitation	mA	2 to 20									
Capacitance (all axes)	pF	N/A		18	30	70					
Electrical Isolation	ohm	$\geq 10^8$									
Polarity (in direction of markings)	–	positive									
Physical Specifications											
Connector	type	4-pin Jack			(3) 10-32 Jack						
Stiffness (z-axis) (x-, y-axis)	lb/ μ in (kN μ m)	4.9 (0.860) 1.9 (0.33)	7.2 (1.26) 2.9 (0.51)	15 (2.63) 5.5 (0.96)	4.9 (0.860) 1.9 (0.33)	7.2 (1.26) 2.9 (0.51)					
Stiffness (rz-axis) (rx-, ry-axis)	lbf*in/radian (N*m/radian)	3.4E5 (3.8E4) 7.5E5 (8.5E4)	9.4E5 (1.1E5) 2.8E5 (3.2E5)	7.1E6 (8.0E5) 1.7E7 (1.9E6)	3.4E5 (3.8E4) 7.5E5 (8.5E4)	9.4E5 (1.1E5) 2.8E5 (3.2E5)					
Coupled Stiffness (x-ry-, y-rx-axis)	lbf*in/ μ in (N*m/ μ m)	1.0 (4.4)	2.5 (11)	7.9 (35)	1.0 (4.4)	2.5 (11)					
Sealing	type	hermetic weld									
Material	type	17-4 stainless steel									
Maximum Moment (z-axis)	ft-lb (N-m)	16 (21.7)	58 (78.6)	375 (508.4)	16 (21.7)	58 (78.6)					
Maximum Moment (x-, y-axis)	ft-lb (N-m)	37 (50.2)	96 (130.2)	940 (1274.5)	37 (50.2)	96 (130.2)					
Weight	oz (gm)	13.6 (386)	34.4 (975)	108.7 (3080)	13.6 (386)	34.4 (975)					
Mounting Holes		1/4-28 UNF-2B	5/16-24 UNF-2B	3/8-24 UNF-2B	1/4-28 UNF-2B	5/16-24 UNF-2B					
Options		Metric									
Model Number	M	M261B01	M261B02	M261B03	M261B11	M261B12					
Mounting Holes		M6x1.0-6H	M8x1.25-6H	M10x1.5-6H	M6x1.0-6H	M8x1.25-6H					
					M10x1.5-6H						

Notes: [1] The Discharge Time Constant (DTC) determines low frequency response according to the relationship $f-5\% = 3/(2\pi(DTC))$. Sensors accurately follow transient events lasting a few percent of the DTC. For square wave events, the DTC should be 100 times the event duration. For ramp shape events, the DTC should be 50 times the event duration and for a half sine pulse the DTC should be 25 times the pulse duration. To ensure measurement system compatibility, use DC coupled or Long Time Constant signal conditioners for long duration transient measurements. [2] Resolution, System Discharge Time Constant and Low Frequency range are dependent upon sensor cable and signal conditioning used.

4-CHANNEL, LINE-POWERED, ICP® SENSOR SIGNAL CONDITIONER

MODEL 482C15

Sensor Input Type: ICP®, Voltage

Voltage Gain: x1, x10, x100

Adjustable ICP® current

Optional input filtering

CE

4-CHANNEL, LINE-POWERED, ICP® & CHARGE SENSOR SIGNAL CONDITIONER

MODEL 482C54

Sensor Input Type: ICP®, Charge

Voltage Gain: x0 to x200 Gain

Frequency Range (-5%): 0.05 to 75000 Hz

DC Power: +9 to +18 VDC

CE

8-CHANNEL, LINE-POWERED, ICP® SENSOR SIGNAL CONDITIONER

MODEL 483C15

Sensor Input Type(s): ICP®, Voltage

Voltage Gain ($\pm 1\%$): x1, x10, x100

Optional input filtering

Power Required: AC Power

CE

8-CHANNEL, LINE-POWERED, ICP® & CHARGE SENSOR SIGNAL CONDITIONER

MODEL 483C30

Sensor Input Type(s): ICP®, Voltage, Charge

Voltage Gain: x0.1 to x200

TEDS Sensor Support: Yes

Power Required: AC Power

CE

