SERIES 5300D

TORKDISC®
IN-LINE ROTARY

- DC to 8500 Hz bandwidth
- AC coupled, 0 to ±10 volt analog output with 2-pole Butterworth high pass filter with user-selectable cutoff frequencies
- DC-coupled, 0 to ±10 volt analog output with 8-pole elliptical low pass filter with user-selectable cutoff frequencies
- Digital system alleviates noise and data corruption
- Full-scale capacities from 250 to 225k lbf-in (28 to 25.4k Nm)

TYPICAL APPLICATIONS

- Automotive engine, powertrain, chassis dynamometer testing for:
 - Performance
 - Emissions
 - Fuel economy
- Development of:
 - Transfer cases
 - Axles
 - Differentials
- Production line validation of powertrain components including:
 - Gear mesh
 - Cold engine signature analysis
 - Chassis dynamometer
- Rotational dynamics testing
- Torque studies on pumps, fans, electric motors
- Gearbox efficiency testing
PCB Load & Torque Division Series 5300D TORKDISC® In-line Rotary Torque Sensor System is a cost-effective solution for testing that requires a robust rotary torque transducer, and when axial space is at a premium. The TORKDISC® System consists of a short-coupled, flange-mounted rotating sensor, a stator assembly and a digital conditioning module. Onboard, the field-proven transmitter converts the torque signals into a high-speed digital representation. Once in digital form, this data is transmitted to a non-contacting pick-up loop, eliminating the risk of noise or data corruption. A remote receiver unit seamlessly converts the digital data to a high-level analog output voltage. The robust construction, high stiffness, and low rotating inertia of the TORKDISC® make it ideal for applications such as chassis and engine dynamometers.

Series 5300D incorporates dual high-level analog outputs, AC and DC coupled, providing both static and dynamic torque measurement capability that can be recorded separately and independently scaled — which is particularly beneficial when high DC levels are present and low levels of AC content is of particular interest.

Series 5300D TORKDISC® also features industry-leading DC bandwidth to 8500 Hz, increasing the system’s dynamic response characteristics. The DC-coupled output features an eight-pole low pass elliptic filter with user-selectable frequencies for minimal roll-off at each filter selection. Included with the AC coupled output is a two-pole Butterworth high-pass filter with a wide range of user-selectable cutoff frequencies.

Features Comparison

| **Performance** | **Voltage Output A** | **AC Coupled, 0 to ±10 volt w/ independent coarse gain control (16 increments)**
| **Voltage Output B** | **DC Coupled, 0 to ±10 volt w/ independent fine and coarse gain control**
| **Digital Output:** | **QSPI**
| **Accuracy** | Overall, 0.1% FS, combined effect of Non-Linearity, Hysteresis, & Repeatability
| **Voltage Output A Filter (AC)** | 2-pole Butterworth high pass w/ selectable cutoff frequencies of 5, 10, 20, 200, 500, & 735 Hz & 8-pole low pass determined by the DC coupled output cutoff frequency selection
| **Voltage Output B Filter (DC)** | 8-pole elliptical low pass w/selectable cutoff frequencies of > 8500, 5000, 2500, 1250, 625, 313, 10, & 1 Hz
| **Bandwidth** | DC to 8500 Hz anti-alias
| **Digital resolution** | 16-bit
| **Analog Resolution** | 0.31 mV (± 10 volts/32768, 16-bit resolution)
| **Digital Sample Rate** | 26,484 samples/sec
| **Group Delay** | 110 microseconds at 10 kHz
| **Noise** | ≤10 mV at 10 kHz
| **Noise Spectral Density** | < 0.0005%FS per root Hz typical

| **Performance** | **Rotor Temp. Range Compensated** | +70 to +170 °F (+21 to +77 °C)
| **System Temp. Effect on Output¹** | ± 0.002% FS/°F (± 0.0036% FS/°C)
| **System Temp. Effect on Zero¹** | ± 0.002% FS/°F (± 0.0036% FS/°C)
| **Rotor/Stator Temp. Range Usable** | +32 to 185 °F (0 to +85 °C)
| **Receiver Temp. Range Usable** | 0 to +122 °F (-17 to +50 °C)
| **Permissible Radial Float, Rotor to Stator** | ± 0.25 in (± 6.35 mm)
| **Permissible Axial Float, Rotor to Stator** | ± 0.25 in (± 6.35 mm)
| **Dynamic Balance** | ISO G 2.5
| **Sensor Positional Sensitivity** | 0.1% FS (180° rotation)

Power Requirements
9 to 18 VDC, 15 watts (90 to 240VAC 50-60 Hz, adaptor is supplied)

| **Symmetry Adjustment** | Factory and user adjustable ± 0.5% FS
| **Supplied Cable, Stator to Receiver** | 24 ft. (7.3 m), RG 58/U (BNC plug/stator side, TNC plug/receiver side)
| **Optional Cable, Stator to Receiver** | 80 ft. (24.4 m), RG 59/U (contact factory for longer lengths)
| **Output Interface** | DB-25 female connector (mating supplied w/backshell)
| **Calibration** | Unipolar shunt calibration, invoked from the receiver front panel
| **Stator Assembly** | Top half of loop is removable for easy installation over rotor
The TORKDISC® and receiver make up a complete system. No additional signal conditioning is required. The receiver box provides voltage and digital output via a 25-pin I/O connector. A standard 24-foot cable is supplied, but an 80-foot, 112-foot or 176-foot cable can be used as well.

TORKDISC® In-Line Rotary Torque Sensor System Dimensions

<table>
<thead>
<tr>
<th>Series</th>
<th>O.D. - Outside Diameter (including telemetry/collar)</th>
<th>Overall Thickness</th>
<th>Pilot</th>
<th>Driven (inner) Bolt Circle</th>
<th>Load (outer) Bolt Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>5302D</td>
<td>7.0 in 177.8 mm</td>
<td>1.1 in 27.9 mm</td>
<td>2.0 in 50.8 mm</td>
<td>(8) 3/8-24 threaded holes, equally spaced on a 3.00 in (76.20 mm) B.C.</td>
<td>(8) 0.406 in (10.31 mm) dia. through holes equally spaced on a 5.00 in (127.0 mm) B.C.</td>
</tr>
<tr>
<td>5308D</td>
<td>8.5 in 215.5 mm</td>
<td>1.1 in 27.9 mm</td>
<td>2.7 in 69.9 mm</td>
<td>(8) 5/8-11 threaded holes, spaced on a 3.75 in (95.25 mm) B.C.</td>
<td>(8) 0.531 in (13.49 mm) dia. through holes equally spaced on a 6.5 in (165.0 mm) B.C.</td>
</tr>
<tr>
<td>5309D</td>
<td>10.5 in 241.0 mm</td>
<td>1.6 in 41.7 mm</td>
<td>4.0 in 101.5 mm</td>
<td>(12) 5/8-11 threaded holes, spaced on a 6.0 in (152.4 mm) B.C.</td>
<td>(16) 0.531 in (13.49 mm) dia. through holes equally spaced on a 8.5 in (215.9 mm) B.C.</td>
</tr>
<tr>
<td>5310D</td>
<td>18.0 in 456.7 mm</td>
<td>2.1 in 53.0 mm</td>
<td>5.5 in 139.7 mm</td>
<td>(12) 7/8-14 threaded holes, spaced on a 9.0 in (228.6 mm) B.C.</td>
<td>(16) 0.780 in (19.8 mm) dia. through holes equally spaced on a 13.0 in (330.2 mm) B.C.</td>
</tr>
</tbody>
</table>

See TORKDISC® In-Line Rotary Sensor System Dimensions Table (page 3) for measurement values.
Superior Customer Service
As with all PCB® instrumentation, the TORKDISC® is complemented with toll-free applications assistance, 24-hour technical service, and backed by a no-risk policy that guarantees total customer satisfaction or your money refunded. We can also calibrate and repair your TORKDISC®.

TORKDISC® ROTARY TORQUE SENSOR SYSTEM

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Unit</th>
<th>5302D-05A</th>
<th>5302D-01A</th>
<th>5302D-02A</th>
<th>5308D-01A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Rated Capacity</td>
<td>lbf-in (Nm)</td>
<td>250 (28)</td>
<td>2000 (226)</td>
<td>5000 (565)</td>
<td>10k (1130)</td>
</tr>
<tr>
<td>Bolt Joint Slip Torque</td>
<td>lbf-in (Nm)</td>
<td>3300 (373)</td>
<td>3300 (373)</td>
<td>10k (1130)</td>
<td>35k (4000)</td>
</tr>
<tr>
<td>Safe Overload</td>
<td>lbf-in (Nm)</td>
<td>750 (85)</td>
<td>6000 (678)</td>
<td>15k (1695)</td>
<td>30k (3400)</td>
</tr>
<tr>
<td>Failure Overload</td>
<td>lbf-in (Nm)</td>
<td>1000 (113)</td>
<td>8000 (904)</td>
<td>20k (2260)</td>
<td>40k (4500)</td>
</tr>
<tr>
<td>Torsional Stiffness</td>
<td>lbf-in/rad (Nm/rad)</td>
<td>300k (34k)</td>
<td>5800k (655k)</td>
<td>15M (1695)</td>
<td>34M (3800k)</td>
</tr>
<tr>
<td>Torsional Angle @ Capacity</td>
<td>degrees</td>
<td>0.125</td>
<td>0.020</td>
<td>0.020</td>
<td>0.017</td>
</tr>
<tr>
<td>Rotating Inertia</td>
<td>lbf-in sec² (Nm sec²)</td>
<td>0.030 (0.003)</td>
<td>0.056 (0.006)</td>
<td>0.117 (0.013)</td>
<td>0.240 (0.027)</td>
</tr>
<tr>
<td>Axial Load Limit [1]</td>
<td>lbf (N)</td>
<td>62.5 (278)</td>
<td>500 (2224)</td>
<td>1000 (4448)</td>
<td>1350 (6000)</td>
</tr>
<tr>
<td>Lateral Load Limit [1]</td>
<td>lbf (N)</td>
<td>62.5 (278)</td>
<td>500 (2224)</td>
<td>1000 (4448)</td>
<td>1650 (7300)</td>
</tr>
<tr>
<td>Bending Moment Limit [1]</td>
<td>lbf-in (Nm)</td>
<td>125 (14)</td>
<td>1500 (169)</td>
<td>3000 (339)</td>
<td>5000 (565)</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>RPM</td>
<td>15k</td>
<td>15k</td>
<td>15k</td>
<td>10k</td>
</tr>
<tr>
<td>Rotor Weight</td>
<td>lbf (kg)</td>
<td>2 (0.9)</td>
<td>3.5 (1.6)</td>
<td>9 (4.1)</td>
<td>10 (4.5)</td>
</tr>
<tr>
<td>Rotor Material</td>
<td>–</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Steel</td>
<td>Steel</td>
</tr>
</tbody>
</table>

Notes:
- Continuous Rated Capacity values are consistent across all models.
- Bolt Joint Slip Torque values vary slightly across models.
- Safe Overload values increase with model number.
- Failure Overload values represent significant increases with model number.
- Torsional Stiffness increases with model number.
- Rotating Inertia values show a consistent trend across models.
- Axial and Lateral Load Limits increase with model number.
- Bending Moment Limits increase with model number.
- Maximum Speed values decrease with model number.
- Rotor Weight values increase with model number.
- Rotor Material values transition from Aluminum to Steel.

© 2022 PCB Piezotronics - all rights reserved. PCB Piezotronics is a wholly-owned subsidiary of Amphenol Corporation. Endevco is an assumed name of PCB Piezotronics of North Carolina, Inc., which is a wholly-owned subsidiary of PCB Piezotronics, Inc. Accoustics, Inc. and The Modal Shop, Inc. are wholly-owned subsidiaries of PCB Piezotronics, Inc. IMI Sensors and Larson Davis are Divisions of PCB Piezotronics, Inc. Except for any third party marks for which attribution is provided herein, the company names and product names used in this document may be the registered trademarks or unregistered trademarks of PCB Piezotronics, Inc., PCB Piezotronics of North Carolina, Inc. (d/b/a Endevco), The Modal Shop, Inc. or Accoustics, Inc. Detailed trademark ownership information is available at www.pcb.com/trademarkownership.