EXPLOSIVE, GUN & IMPACT TESTING
EXPLOSIVE, GUN & IMPACT TESTING

SENSORS FOR BLAST MEASUREMENTS

Shock Accelerometers: Our high amplitude shock accelerometers represent state-of-the-art industry technology for miniature, high amplitude, DC response acceleration sensors, capable of measuring long duration transient motion, as well as responding to and surviving extremely fast rise times typical of a high-G shock event. Both a packaged and an OEM configuration are offered to fulfill a variety of installation requirements.

Pressure Sensors: Our pressure sensors are designed for a broad range of explosion, blast, and shock wave testing. They are frequency tailored to capture both peak pressure and total impulse measurements. Applications include measuring air-blast pressure in free-field or closed bunker arenas to obtain peak pressure, total impulse, shock wave and time-of-arrival measurements often used to study blast effects on structures, vehicles, or other objects.

In this catalog, you will find a listing of PCB®’s most popular, high-G shock sensors and other hardware for these applications. Please log on to www.pcb.com, and search the model series for detailed specifications. You can also contact us at 866-816-8892, or sales@pcb.com, to discuss your specific requirement with an Application Engineer.

CIVILIAN APPLICATIONS INCLUDE:

- Mining
- Construction
- Demolition
- Pyrotechnics

DEFENSE APPLICATIONS INCLUDE:

- Aerial Bombs
- Mines
- Torpedoes
- Breeching Operations
- Ballistics
- Tactical Missiles & More

TABLE OF CONTENTS

MEMS High-G Shock Accelerometers ... 4 - 5
Piezoelectric Accelerometers .. 6 - 9
 Low Cost, Embeddable Accelerometers Series 660 6 - 8
 High Amplitude ICP® Shock Accelerometers Series 350 9
Pressure Products for Blast Testing ... 10 - 17
 High Frequency Series 113B ... 11 - 12
 Ground Isolated Series 102B .. 13
 ICP® High Intensity, Acoustic Sensors Series 106B 14
 Time of Arrival ICP Micro-pressure Sensors Series 132 15
 Tourmaline Pressure Bar Series 134 .. 15
 Free Field Blast Pressure Pencil Probe Series 137 16
 Tourmaline Underwater Blast Series 138 .. 17
Pressure Products for Ballistic Testing ... 18 - 22
 ICP® Ballistic Sensors Series 109 ... 19
 Conformal Ballistic Sensors Series 117B ... 20
 Shot Shell Sensor Series 118407 ... 22
Force & Strain Products for Structural Impact .. 23 - 24
 Impact Force Sensors 201B and 201C ... 23
 Dynamic Force Strain 740802 .. 24
Placebo Transducers ... 26 - 27
Calibration Products ... 28 - 31
 Calibration Systems .. 28
 Special Purpose ... 29
 Shock Accelerometer Calibration Model 9525C ... 31
Specialized Instrumentation ... 32 - 33
 Firearms Detection Systems Model LXT1-QPR 32
 Ballistic Peak Pressure Monitoring System Model 444A53 33
Signal Conditioning and Converters ... 34 - 36
Cables and Adapters ... 37 - 47
 Coaxial Cable Assemblies ... 39 - 41
 4-Conductor Cable Assemblies ... 37 - 38
 Custom Cable Assemblies ... 43
 Coaxial Custom Cable Assemblies ... 42
 Cable Connectors ... 44 - 45
 Connector Adapters .. 46 - 47
Electrically compatible with the same type 4-wire circuit used to condition a strain gauge full bridge and since they have much greater output compared to a strain gauge, the requirement for signal amplification is greatly reduced. They afford a wider operating temperature range when compared to mechanically isolated ICP® accelerometers. Their frequency response, dependent on model, can be uniform from DC to values as high as 20 kHz. To lessen the severity of response when their resonant frequency is excited, they incorporate squeeze film damping, achieving values of 0.02 to 0.06 of critical. These damping values are much higher than those found in legacy MEMS accelerometers. Since silicon is a brittle material, over range stops are also incorporated to minimize breakage of the sensing element, and then the sensing element is sealed within a hermetic package. At comparable G levels, MEMS technology enables the smallest package size to be attained for individual accelerometers.

HIGHLIGHTS:
- Single axis and triaxial arrangements
- Mechanical over-range stops improves survivability
- Slight damping reduces resonance amplification
- Excellent amplitude linearity
- Low power consumption

APPLICATIONS:
- Metal-to-metal impact & pyroshock
- Data recorders, penetrator & launch tests
- Consumer electronics drop testing
- Sporting goods and impact tool testing
- Blast loading & survivability of structures
- Fuze, safe and arm

2000 G MEMS SHOCK ACCELEROMETER
- Sensitivity: 0.02 mV/Vg
 (0.002 mV/V/(m/s²))
- Measurement Range:
 ±2000 g pk (±19613 m/s² pk)
- Frequency Range (±1dB):
 0 - 10000 Hz

20000 G MEMS SHOCK ACCELEROMETER
- Sensitivity: 0.001 mV/Vg
 (0.0001 mV/V/(m/s²))
- Measurement Range:
 ±20000 g pk (±196100 m/s² pk)
- Frequency Range (±1dB):
 0 - 10000 Hz

60000 G MEMS SHOCK ACCELEROMETER
- Sensitivity: 0.0003 mV/Vg
 (0.00003 mV/V/(m/s²))
- Measurement Range:
 ±60000 g pk (±588400 m/s² pk)
- Frequency Range (±1dB):
 0 - 20000 Hz

Piezoresistive shock accelerometers, manufactured by MEMS technology, have low power consumption while still providing +/- 200 mV full scale output at acceleration levels greater than 50 kg. The accelerometers are electrically compatible with the same type 4-wire circuit used to condition a strain gauge full bridge and since they have much greater output compared to a strain gauge, the requirement for signal amplification is greatly reduced. They afford a wider operating temperature range when compared to mechanically isolated ICP® accelerometers. Their frequency response, dependent on model, can be uniform from DC to values as high as 20 kHz. To lessen the severity of response when their resonant frequency is excited, they incorporate squeeze film damping, achieving values of 0.02 to 0.06 of critical. These damping values are much higher than those found in legacy MEMS accelerometers. Since silicon is a brittle material, over range stops are also incorporated to minimize breakage of the sensing element, and then the sensing element is sealed within a hermetic package. At comparable G levels, MEMS technology enables the smallest package size to be attained for individual accelerometers.
PIEZOELECTRIC ACCELEROMETERS

SERIES 660 (TO-5 PACKAGE) LOW COST, EMBEDDABLE ACCELEROMETERS

Series 660 accelerometers are ideal for continuous vibration monitoring in high-volume and commercial OEM applications. The Series 660 low cost accelerometers offer an affordable solution for vibration and shock measurements in high-volume and commercial OEM applications. The units are particularly well suited for shock and impact detection of packages or components, as well as bearing and gear mesh vibration measurements in predictive maintenance and condition monitoring requirements. The compact designs may be imbedded into machinery at the OEM level to provide value-added monitoring protection.

The units employ field-proven, solid-state, piezoelectric sensing elements for durability and broadband performance. Choose from either charge mode types, which achieve high operating temperatures or voltage mode ICP®, and 3-wire low power varieties.

Mountable via adhesive or soldering and choice of either integral cable or solder pin electrical connections

Variety of sensitivities to accommodate a wide variety of applications

Broad bandwidth, high shock survivability, wide operating temperature range, high resolution, and large dynamic range

HIGHLIGHTS:
- Choice of standard TO-5 or TO-8 transistor-style packages
- Choice of charge mode piezoelectric, voltage mode ICP®, and 3-wire low power varieties
- Mountable via adhesive or soldering and choice of either integral cable or solder pin electrical connections
- Variety of sensitivities to accommodate a wide variety of applications
- Broad bandwidth, high shock survivability, wide operating temperature range, high resolution, and large dynamic range

OPTIONS:
- Low Output Bias Voltage
- High Temperature Operation to 365 °F (185 °C)
- High Range (less sensitivity)
- Temperature Output Signal

SPECIFICATIONS

TO-5

<table>
<thead>
<tr>
<th>Specification</th>
<th>Low Profile TO-5</th>
<th>TO-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Model Sensitivity (±20%)</td>
<td>10 mV/g</td>
<td>10 mV/g</td>
</tr>
<tr>
<td>Measurement Range</td>
<td>500 g</td>
<td>50 g</td>
</tr>
<tr>
<td>Maximum Frequency</td>
<td>10 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Maximum Temperature Range</td>
<td>-65°C to +185°C</td>
<td>-54°C to +85°C</td>
</tr>
<tr>
<td>Capacitance</td>
<td>350 pF</td>
<td>350 pF</td>
</tr>
<tr>
<td>Weight</td>
<td>0.06 oz</td>
<td>0.1 oz</td>
</tr>
</tbody>
</table>

3-Wire, Low-Power Configuration

<table>
<thead>
<tr>
<th>Specification</th>
<th>Low Profile TO-5</th>
<th>TO-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Model Sensitivity (±20%)</td>
<td>10 mV/g</td>
<td>10 mV/g</td>
</tr>
<tr>
<td>Measurement Range</td>
<td>100 mV/g</td>
<td>10 mV/g</td>
</tr>
<tr>
<td>Maximum Frequency</td>
<td>10 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Maximum Temperature Range</td>
<td>-65°C to +185°C</td>
<td>-54°C to +85°C</td>
</tr>
<tr>
<td>Capacitance</td>
<td>350 pF</td>
<td>350 pF</td>
</tr>
<tr>
<td>Weight</td>
<td>0.06 oz</td>
<td>0.1 oz</td>
</tr>
</tbody>
</table>

Charge Mode Configuration

<table>
<thead>
<tr>
<th>Specification</th>
<th>Low Profile TO-5</th>
<th>TO-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (±20%)</td>
<td>5 pC/g</td>
<td>0.51 pC/m/s</td>
</tr>
<tr>
<td>Measurement Range</td>
<td>100 mV/g</td>
<td>10 mV/g</td>
</tr>
<tr>
<td>Maximum Frequency</td>
<td>10 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Maximum Temperature Range</td>
<td>-65°C to +185°C</td>
<td>-54°C to +85°C</td>
</tr>
<tr>
<td>Capacitance</td>
<td>350 pF</td>
<td>350 pF</td>
</tr>
<tr>
<td>Weight</td>
<td>0.06 oz</td>
<td>0.1 oz</td>
</tr>
</tbody>
</table>

Common Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Low Profile TO-5</th>
<th>TO-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Sensitivity</td>
<td>±3%</td>
<td>±3%</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>±1%</td>
<td>±1%</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>0.15 °C/°F</td>
<td>0.18 °C/°F</td>
</tr>
<tr>
<td>Shock Limit</td>
<td>5000 g</td>
<td>70k m/s²</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Mounting</td>
<td>Adhesive or Solder</td>
<td>Adhesive or Solder</td>
</tr>
<tr>
<td>Sealing (e naked)</td>
<td>Hermetic</td>
<td>Hermetic</td>
</tr>
</tbody>
</table>

Note:
- Measurement range achieved in dependent on excitation voltage supplied, i.e.: Measurement Range =
Example of a TO-5 accelerometer mounted on a circuit board

2-WIRE ICP® MODE

2-WIRE CHARGE MODE

3-WIRE VOLTAGE MODE

4-WIRE VOLTAGE MODE WITH TEMPERATURE OUTPUT

HIGH AMPLITUDE ICP® SHOCK ACCELEROMETERS

Piezoelectric ICP® accelerometers afford a very high signal output (+/- 5 volts full scale) and the ease of two-wire electrical connectivity. Their inherent ruggedness enables them to be severely over ranged without damage. The addition of internal mechanical isolation minimizes the high frequency stress that would otherwise be encountered by their ceramic sensing elements. This mechanical isolation, coupled with an internal 2-pole electrical filter, built into the ICP® circuitry, tailors the overall accelerometer response to assure data quality to frequencies as high as 10 kHz. Depending on the specific model, accelerations in excess of 50 kg can be successfully measured. These modern designs, with their internal elastomeric isolation materials are verified through calibration to remain dynamically linear and are enabling piezoelectric accelerometers to operate in increasingly severe acceleration environments.

SHOCK ICP® ACCELEROMETER
MODEL 350C23
- Sensitivity: 0.5 mV/g (0.005 mV/(m/s²))
- Measurement Range:
 ±10000 g pk (±98000 m/s² pk)
- Frequency Range (+1 dB):
 0.4 - 10000 Hz

SHOCK ICP® ACCELEROMETER
MODEL 350C24
- Sensitivity: 1 mV/g (0.01 mV/(m/s²))
- Measurement Range:
 ±5000 g pk (±49000 m/s² pk)
- Frequency Range (+1dB):
 0.4 - 10000 Hz

SHOCK ICP® ACCELEROMETER
MODEL 350002
- Sensitivity: 0.1 mV/g (0.01 mV/(m/s²))
- Measurement Range:
 ±5000 g pk (±49000 m/s² pk)
- Frequency Range (+1dB):
 4 - 10000 Hz

SHOCK ICP® ACCELEROMETER
MODEL 350801
- Sensitivity: 0.05 mV/g (0.005 mV/(m/s²))
- Measurement Range:
 ±100000 g pk (±980000 m/s² pk)
- Frequency Range (+1 dB):
 4 - 10000 Hz

TRIAXIAL SHOCK ICP® ACCELEROMETER
MODEL 350043
- Sensitivity: 0.5 mV/g (0.005 mV/(m/s²))
- Measurement Range:
 ±10000 g pk (±98000 m/s² pk)
- Frequency Range (+1dB):
 0.4 - 10000 Hz

TRIAXIAL SHOCK ICP® ACCELEROMETER
MODEL 350844
- Sensitivity: 1 mV/g (0.1 mV/(m/s²))
- Measurement Range:
 ±5000 g pk (±49000 m/s² pk)
- Frequency Range (+1dB):
 0.4 - 10000 Hz
PRESSURE PRODUCTS FOR BLAST TESTING

MEASURING EXPLOSIONS AND PROPELLANT BURNS

Pressure sensors with quartz, ceramic and tourmaline sensing elements are used for a wide variety of shock wave, blast and explosive testing. Typical applications include measurement of shock and blast waves, combustion or detonation in closed bombs, projectile velocity, free field or underwater explosive testing, and squib lot acceptance testing. All of these applications require high frequency response and durability, ability to drive long cables, and operate in adverse environments.

In applications involving long input cables to data acquisition systems, care must be exercised to assure the measurement system has adequate frequency response. Capacitance associated with the long cables can act as a low pass filter. Sensor output voltage, cable capacitance and constant current are factors to be considered. More current is required to drive higher voltages over longer cables. PCB® signal conditioners can be easily field-adjusted up to 20 mA to drive long cables. Selecting a sensor to provide about 1 V full scale for the expected pressure to be measured, rather than 5V, will provide 5 times greater frequency response for a given current and cable length.

Most of the sensors listed in this section incorporate acceleration-compensating sensing elements with integral electronics, which provide a frequency-tailored, non-resonant response. Frequency tailored sensors have microsecond rise time and suppressed resonance to faithfully follow shock wave events without the characteristic “ringing” common in other sensors.

APPLICATIONS:
- Air Blast Measurement
- Underwater Explosion Measurement
- Peak and Total Impulse
- Explosive Research and Structural Loading
- Shock Tube or Closed Bomb Testing
- Wave Velocity and/or Time of Arrival Determinations
- Explosive Component (e.g., Squib) Lot Acceptance

SERIES 113B - HIGH FREQUENCY, GENERAL PURPOSE PRESSURE SENSORS

PCB® Series 113B dynamic pressure sensors set the standard for extremely fast, micro-second response and a wide amplitude and frequency range that allows them to excel in high-frequency applications where minimum sensor diameter is required. Typical applications include combustion studies, explosive component testing (e.g. detonators, explosive bolts), airbag testing, and measurement of air blast shock waves resulting from explosions.

HIGHLIGHTS:
- Fast rise time ≤ 1 μsec from quartz element
- Ultra-high resonant frequency of ≥ 500 kHz
- Frequency-tailored output without the “ringing” characteristic of most other sensors
- Internal acceleration compensation minimizes shock and vibration sensitivity

HIGH FREQUENCY ICP® PRESSURE SENSOR
MODEL 113B28
- Sensitivity: 100 mV/psi (14.5 mV/kPa)
- Measurement Range (±5 Volt Output): 50 psi (345 kPa)
- Low Frequency Response: 0.5 Hz

HIGH FREQUENCY ICP® PRESSURE SENSOR
MODEL 113B27
- Sensitivity: 50 mV/psi (7.25 mV/kPa)
- Measurement Range (±5 Volt Output): 100 psi (690 kPa)
- Low Frequency Response: 0.5 Hz

HIGH FREQUENCY ICP® PRESSURE SENSOR
MODEL 113B21
- Sensitivity: 25 mV/psi (3.6 mV/kPa)
- Measurement Range (±5 Volt Output): 200 psi (1380 kPa)
- Low Frequency Response: 0.5 Hz
HIGH FREQUENCY ICP® PRESSURE SENSOR

MODEL 113B26
- Sensitivity: 10 mV/psi (1.45 mV/kPa)
- Measurement Range (+5 Volt Output): 500 psi (3450 kPa)
- Low Frequency Response: 0.01 Hz

MODEL 113B24
- Sensitivity: 5 mV/psi (0.725 mV/kPa)
- Measurement Range (+5 Volt Output): 1 psi (6895 kPa)
- Low Frequency Response: 0.005 Hz

MODEL 113B22
- Sensitivity: 1 mV/psi (0.145 mV/kPa)
- Measurement Range (+5 Volt Output): 5 psi (34475 kPa)
- Low Frequency Response: 0.001 Hz

MODEL 113B23
- Sensitivity: 0.5 mV/psi (0.073 mV/kPa)
- Measurement Range (+5 Volt Output): 10 psi (68950 kPa)
- Low Frequency Response: 0.0005 Hz

GROUND ISOLATED, DYNAMIC PRESSURE SENSOR

MODEL 102B18
- Sensitivity: 100 mV/psi (14.5 mV/kPa)
- Measurement Range (+5 Volt Output): 50 psi (345 kPa)
- Low Frequency Response: 0.5 Hz

MODEL 102B16
- Sensitivity: 50 mV/psi (7.25 mV/kPa)
- Measurement Range (+5 Volt Output): 100 psi (690 kPa)
- Low Frequency Response: 0.5 Hz

MODEL 102B15
- Sensitivity: 25 mV/psi (3.6 mV/kPa)
- Measurement Range (+5 Volt Output): 200 psi (1380 kPa)
- Low Frequency Response: 0.5 Hz

MODEL 102B06
- Sensitivity: 10 mV/psi (1.45 mV/kPa)
- Measurement Range (+5 Volt Output): 500 psi (3450 kPa)
- Low Frequency Response: 0.01 Hz

MODEL 102B
- Sensitivity: 1 mV/psi (0.145 mV/kPa)
- Measurement Range (+5 Volt Output): 5 psi (34475 kPa)
- Low Frequency Response: 0.001 Hz

GROUND ISOLATED, DYNAMIC PRESSURE SENSOR

MODEL 102B03
- Sensitivity: 0.5 mV/psi (0.073 mV/kPa)
- Measurement Range (+5 Volt Output): 10 psi (68950 kPa)
- Low Frequency Response: 0.0005 Hz

SERIES 102B - GROUND ISOLATED VERSION OF THE SERIES 113B

These sensors have all of the same features and benefits of the Series 113B, plus the added benefit of having their output electrically isolated from ground, which helps prevent ground loop problems. This series can accommodate an optional ablative coating (Prefix: CA) to protect the diaphragm from thermal shock in flash-temperature applications.

HIGHLIGHTS:
- Ultra-high frequency > 500 kHz
- Fast rise time < 1 µsec
- Peak pressure and total impulse

APPLICATIONS:
- Shock Tubes and Closed Bombs
- Time-of-arrival Measurements
- Explosion, Blast, and Shock Wave
SERIES 106B - ICP® HIGH INTENSITY, ACOUSTIC PRESSURE SENSORS

Model 106B and 106B50 are high sensitivity, acceleration-compensated, ICP® quartz pressure sensors suitable for measuring intense acoustic phenomena. In fact, the series is widely used for measuring acoustic fields in operating launch vehicles and their associated payloads. The Series 106 family range spans from acoustic pressures of less than 80 dB to several psi. Similar piezoelectric technology is employed in PCB’s complete range of hermetically sealed dynamic pressure sensors. These products measure pressure fluctuations from acoustic levels to tens of thousands of psi and frequencies from nearly DC to tens of kHz. Their ability to measure only pressure fluctuations above a specified frequency imposed on large static pressure fields makes them uniquely suited for such applications as combustion instability monitoring.

SERIES 132 - TIME OF ARRIVAL, ICP® MICRO-PRESSURE SENSORS

High-Sensitivity Micro-Pressure Sensors are well suited for short wavelength acoustic and shock wave measurements associated with high-frequency projectile detection systems. Incorporating a 1 mm diameter sensing element and integral microelectronics in a 3 mm housing, these sensors have very high sensitivity and microsecond response capable of identifying the bow and stern wave from a passing projectile. An internal 8 kHz high-pass filter eliminates low-frequency inputs. Series 132 Microsensors are available in five different physical configurations to accommodate a wide range of application requirements.

Series 132A30 Microsensors all have a sensitivity of 100 mV/psi and come in a variety of external configurations to suit your specific application.

SERIES 134 - TOURMALINE PRESSURE BAR

This unique non-resonant sensor is designed for instantaneous, reflected (face-on) shock wave pressure measurements. A shock wave pressure impacting the very thin tourmaline crystal which operates into a silver alloyed “pressure bar”, eliminates sensor structure response. The sensor has a 0.2-microsecond rise time. Since the sensor diaphragm end is coated with a conductive silver epoxy, the sensor should not be used in water or chemical environments. Series 134 can be used for shock tube calibration in a dry gas environment.

High-Low Temperature Shock Bar

HIGH SENSITIVITY, ICP® ACOUSTIC PRESSURE SENSOR
MODEL 106B52
- Sensitivity: 5000 mV/psi (725 mV/kPa)
- Measurement Range: 1 psi (6.89 kPa)
- Low Frequency Response (-5%): 2.5 Hz

HIGH SENSITIVITY, ICP® ACOUSTIC PRESSURE SENSOR
MODEL 106B50
- Sensitivity: 500 mV/psi (72.5 mV/kPa)
- Measurement Range: 5 psi (34.45 kPa)
- Low Frequency Response (-5%): 0.5 Hz

HIGH SENSITIVITY, ICP® ACOUSTIC PRESSURE SENSOR
MODEL 106B
- Sensitivity: 300 mV/psi (43.5 mV/kPa)
- Measurement Range: 8.3 psi (57.2 kPa)
- Low Frequency Response (-5%): 0.5 Hz

TIME OF ARRIVAL, ICP® MICRO-PRESSURE SENSORS
MODEL 132B38
- Sensitivity: 140 mV/psi (20.3 mV/kPa)
- Measurement Range: 50 psi (345 kPa)
- Low Frequency Response (-5%): 11 kHz

TOURMALINE PRESSURE BAR
MODEL 134
- Sensitivity: 5 mV/psi to 0.25 mV/psi (0.73 mV/kPa to 0.04 mV/kPa)
- Measurement Range: 1000 psi to 20 kpsi (6895 kPa to 137900 kPa)
- Low Frequency Response (-5%): 0.25 kHz
SERIES 137 - ICP® FREE-FIELD BLAST PRESSURE “PENCIL” PROBE

Series 137 incorporates acceleration-compensated quartz elements and integral microelectronics for long cabledriving, improved stability and low thermal sensitivity.

MODEL 137B23B (4-PIN CONNECTOR WITH 2-CHANNEL OUTPUT)

MODEL 137B2XXA (10-32 CONNECTOR WITH PROTECTIVE COVER)

MODEL 137B225 (4-PIN CONNECTOR WITH 2-CHANNEL OUTPUT)

HIGHLIGHTS:
- Designed for reflected shock wave pressure measurement
- Unique non-resonating design, Tourmaline sensing element
- Pressure ranges from 1000 to 20k psi (6894 to 137,900 kPa)
- Rise time < 0.2 usec

FREE-FIELD ICP® BLAST PRESSURE PROBE

<table>
<thead>
<tr>
<th>Model Number</th>
<th>137B21B</th>
<th>137B22B</th>
<th>137B23B</th>
<th>137B24B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>1 kpsi (28</td>
<td>500 psi</td>
<td>50 psi</td>
<td>350 psi</td>
</tr>
<tr>
<td></td>
<td>6895 kPa</td>
<td>3447 kPa</td>
<td>3447 kPa</td>
<td>2174 kPa</td>
</tr>
<tr>
<td>Useful Overrange</td>
<td>1 kpsi (1</td>
<td>6895 kPa</td>
<td>690 kPa</td>
<td>3447 kPa</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1 mV/kPa</td>
<td>0.145 mV/kPa</td>
<td>0.145 mV/kPa</td>
<td>0.145 mV/kPa</td>
</tr>
<tr>
<td></td>
<td>145 mV/kPa</td>
<td>145 mV/kPa</td>
<td>145 mV/kPa</td>
<td>145 mV/kPa</td>
</tr>
<tr>
<td>Maximum Pressure</td>
<td>6 kpsi</td>
<td>3447 kPa</td>
<td>3447 kPa</td>
<td>3447 kPa</td>
</tr>
<tr>
<td></td>
<td>6 kpsi</td>
<td>6905 kPa</td>
<td>6905 kPa</td>
<td>6905 kPa</td>
</tr>
<tr>
<td>Resistance</td>
<td>8.5 kohm</td>
<td>0.599 kPa</td>
<td>0.599 kPa</td>
<td>0.599 kPa</td>
</tr>
<tr>
<td></td>
<td>8.5 kohm</td>
<td>0.599 kPa</td>
<td>0.599 kPa</td>
<td>0.599 kPa</td>
</tr>
<tr>
<td>Non-linearity</td>
<td>< 1 % (2)</td>
<td>< 1 % (2)</td>
<td>< 1 % (2)</td>
<td>< 1 % (2)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-100 to +275 °F</td>
<td>-100 to +275 °F</td>
<td>-100 to +275 °F</td>
<td>-100 to +275 °F</td>
</tr>
<tr>
<td></td>
<td>-73 to +135 °C</td>
<td>-73 to +135 °C</td>
<td>-73 to +135 °C</td>
<td>-73 to +135 °C</td>
</tr>
<tr>
<td>Discharge Time Constant (room temp)</td>
<td>> 9.2 sec</td>
<td>> 9.2 sec</td>
<td>> 9.2 sec</td>
<td>> 9.2 sec</td>
</tr>
<tr>
<td>Electrical Connection</td>
<td>BNC Coaxial Jack</td>
<td>BNC Coaxial Jack</td>
<td>BNC Coaxial Jack</td>
<td>BNC Coaxial Jack</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Diaphragm Material</td>
<td>Invar</td>
<td>Invar</td>
<td>Invar</td>
<td>Invar</td>
</tr>
<tr>
<td>Mounting</td>
<td>Epoxy</td>
<td>Epoxy</td>
<td>Epoxy</td>
<td>Epoxy</td>
</tr>
</tbody>
</table>
| Notes | 1) Fast transient output, minimum 24 VDC supply voltage required. Negative 10 volt output may be limited by output bias. 2] Zero bias, linear square, straight line method. 3] For +1 V output.

SERIES 138 - ICP® TOURMALINE UNDERWATER BLAST SENSOR

Series 138 Sensors measure shock wave pressures associated with underwater explosion testing. The sensors are structured with a volumetrically sensitive tourmaline crystal, suspended and sealed in an insulating, oil-filled vinyl tube. They have integral microelectronics. These underwater shock wave sensors provide a clean, non-resonant, high-voltage output through long cables in adverse underwater environments. They can be supplied with a sealed cable of appropriate length, ready to operate. Two physical configurations are available.

HIGHLIGHTS:
- ICP® underwater blast explosion pressure probes
- Ranges from 1000 to 50k psi (6894 to 344740 kPa)
- Rise time < 1.5 usec
- Resonant frequency >1M Hz

UNDERWATER TOURMALINE BLAST SENSORS FOR PEAK, OVERPRESSURE AND HIGH-PRESSURE BUBBLE ENERGY MEASUREMENTS

SERIES 138A MODEL NUMBERING SYSTEM

1) Connector Type
 - Default 3B-2 Sealable Jack
 - W Attached Waterproof Cable

2a) ICP® Output Pressure Range and Tube Length / Configuration

<table>
<thead>
<tr>
<th>Model Number</th>
<th>138A01</th>
<th>138A02</th>
<th>138A03</th>
<th>138A04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>10 kpsi (6895 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>10 kpsi (6895 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>50 kpsi (34475 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>50 kpsi (34475 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
</tr>
<tr>
<td>Tube Length / Configuration</td>
<td>4.7 in (120 mm) Length for Horizontal Mounting</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Diaphragm Material</td>
<td>Invar</td>
<td>Invar</td>
<td>Invar</td>
<td>Invar</td>
</tr>
</tbody>
</table>
| Notes | 1) For +10 V output, minimum 24 VDC supply voltage required. Negative 10 volt output may be limited by output bias. 2] Zero bias, linear square, straight line method. 3] For +1 V output. 4] For 1 kV, 10 µsec rise time.

2b) Charge Output Pressure Range and Tube Length / Configuration

<table>
<thead>
<tr>
<th>Model Number</th>
<th>138A05</th>
<th>138A06</th>
<th>138A07</th>
<th>138A08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>50 kpsi (34475 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>50 kpsi (34475 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>50 kpsi (34475 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>50 kpsi (34475 kPa) with 7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
</tr>
<tr>
<td>Tube Length / Configuration</td>
<td>7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
<td>7.6 in (193 mm) Length and Sinker Hole for Vertical Mounting</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Diaphragm Material</td>
<td>Invar</td>
<td>Invar</td>
<td>Invar</td>
<td>Invar</td>
</tr>
</tbody>
</table>
| Notes | 1) For +10 V output, minimum 24 VDC supply voltage required. Negative 10 volt output may be limited by output bias. 2] Zero bias, linear square, straight line method. 3] For +1 V output. 4] For 1 kV, 10 µsec rise time.

3) Attached Model 038 Cable Length (add only if ordering the W option)

<table>
<thead>
<tr>
<th>Example</th>
<th>138A05</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>/038CY300AC</td>
</tr>
<tr>
<td></td>
<td>Attached 300 ft. 038 cable, 5000 psi measurement range, 7.6 in. length, sinker hole, BNC plug termination</td>
</tr>
</tbody>
</table>
In the early 1970’s PCB® worked with members of the Sporting Arms and Ammunition Manufacturers’ Institute (SAAMI) to develop an accurate, durable, standard test method for sporting arms ammunition. Pressure sensors suitable for implementation into a standardized test method for rapid-fire production testing of ammunition were required. This method involved a sensor with a machined curved diaphragm that measures pressure directly through the shell case. Based on this success, the conformal sensor became a SAAMI/ANSI “National Standard” for ammunition testing.

Series 117B conformal pressure sensors measure true gun chamber pressure directly through an unmodified shell case. Since the sensor diaphragm is machined to conform flush to the specific chamber diameter, the measurement process is not altered or changed in any way. There are no cartridges to be drilled or troublesome gas passages to be cleaned when using the conformal method. Conformal sensors have proven to be rugged, stable instruments, lasting thousands of rounds. Since the same sensor may outlast the life of many barrels, it is possible to start and finish ammunition batch qualification testing without experiencing sensor failure during the test.

Keeping with our tradition, PCB® continues to offer a complete line of sensors for conformal and case mouth ballistic measurements. All PCB® sensors are provided with NIST traceable calibration. For pre-calibration stabilization purposes, all ballistic pressure sensors are hydraulically cycled at high pressures and most are test fired in the PCB® ballistic firing range. PCB® also offers a high pressure static calibration system, Model 905C, for on-site use in ballistic labs. Side-by-side dynamic/static comparison calibration services are offered for PCB® and competitors’ ballistic sensors.

In the early 1970’s PCB® worked with members of the Sporting Arms and Ammunition Manufacturers’ Institute (SAAMI) to develop an accurate, durable, standard test method for sporting arms ammunition. Pressure sensors suitable for implementation into a standardized test method for rapid-fire production testing of ammunition were required. This method involved a sensor with a machined curved diaphragm that measures pressure directly through the shell case. Based on this success, the conformal sensor became a SAAMI/ANSI “National Standard” for ammunition testing.

Series 117B conformal pressure sensors measure true gun chamber pressure directly through an unmodified shell case. Since the sensor diaphragm is machined to conform flush to the specific chamber diameter, the measurement process is not altered or changed in any way. There are no cartridges to be drilled or troublesome gas passages to be cleaned when using the conformal method. Conformal sensors have proven to be rugged, stable instruments, lasting thousands of rounds. Since the same sensor may outlast the life of many barrels, it is possible to start and finish ammunition batch qualification testing without experiencing sensor failure during the test.

Keeping with our tradition, PCB® continues to offer a complete line of sensors for conformal and case mouth ballistic measurements. All PCB® sensors are provided with NIST traceable calibration. For pre-calibration stabilization purposes, all ballistic pressure sensors are hydraulically cycled at high pressures and most are test fired in the PCB® ballistic firing range. PCB® also offers a high pressure static calibration system, Model 905C, for on-site use in ballistic labs. Side-by-side dynamic/static comparison calibration services are offered for PCB® and competitors’ ballistic sensors.
SERIES 117B - CHARGE MODE
CONFORMAL BALLISTIC SENSORS

Conformal ballistic sensors measure true gun chamber pressure directly through the cartridge case. The diaphragm of the conformal sensor is contoured to match a specific chamber diameter. An alignment guide and spacers help the user to install the sensor flush with the gun chamber walls.

The conformal ballistic sensor, when correctly installed, has a proven life expectancy of hundreds of thousands of rounds, outlasting many test barrels. Rapid-fire testing is possible since there are no cartridges to drill and align, no diaphragm ablatives to apply, and no gas passages to clean. The conformal sensor does not affect operation of the test barrel, nor change the measurement process.

Developed in cooperation with members of SAAMI to provide an accurate rapid-fire electronic production test method to replace the mechanical “copper crusher,” the conformal sensor has experienced 20 years of proven performance.

Conformal calibration through an unfired, unmodified empty cartridge shell case with PCB® Series 090B Calibration Adaptor accounts for the effects of the cartridge case. Output from the conformal sensor is compatible with any charge amplifier. The PCB® Model 443A53 Digital Peak Holding System with a charge amplifier and auto-reset peak meter facilitates rapid-fire testing of production ammunition.

The two machined flats near the connector end, an alignment guide, and a captive retaining nut facilitate installation. The nut automatically extracts the sensor when it is unscrewed. Series 090B Calibration Adaptor permits static calibration of the Model 117B Sensor, with pressures to be applied to the empty cartridge case. Spacer set is supplied to facilitate flush installation of the sensor.

HIGHLIGHTS:
- Proven long life
- Outlasts life of many barrels
- ANSI/SAAMI standards Z299 test method
- Allows rapid-fire testing
- No drilled cases or recessed passages
- Cost effective

Conformal vs. Standard Case Mouth Installation

Typical Conformal Calibration Adaptor System

Typical Conformal Sensor Installation in Universal Receiver

BALLISTIC PRESSURE SENSORS SMALL ARMS TESTING

<table>
<thead>
<tr>
<th>Model Number</th>
<th>117B Small Caliber</th>
<th>117B Large Caliber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>35 kpsi</td>
<td>60 kpsi</td>
</tr>
<tr>
<td>241 kPa</td>
<td>414 kPa</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.110 pC/psi</td>
<td>0.140 pC/psi</td>
</tr>
<tr>
<td>0.016 pC/kPa</td>
<td>0.021 pC/kPa</td>
<td></td>
</tr>
<tr>
<td>Maximum Pressure</td>
<td>40 kpsi</td>
<td>80 kpsi</td>
</tr>
<tr>
<td>275 kPa</td>
<td>552 kPa</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>2 psi</td>
<td>14 kPa</td>
</tr>
<tr>
<td>14 kPa</td>
<td>14 kPa</td>
<td></td>
</tr>
<tr>
<td>Pressure Frequency</td>
<td>> 300 kHz</td>
<td>> 300 kHz</td>
</tr>
<tr>
<td>Rise Time (Reflected)</td>
<td>< 2 µsec</td>
<td>< 2 µsec</td>
</tr>
<tr>
<td>Gain Linearity</td>
<td>< 2 % [1]</td>
<td>< 2 % [1]</td>
</tr>
<tr>
<td>Acceleration Sensitivity</td>
<td><0.02 psi/g</td>
<td><0.02 psi/g</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-100 to +400 °F</td>
<td>-100 to +400 °F</td>
</tr>
<tr>
<td>-73 to +204 °C</td>
<td>-73 to +204 °C</td>
<td></td>
</tr>
<tr>
<td>Electrical Connector</td>
<td>10-32 Coaxial Jack</td>
<td>10-32 Coaxial Jack</td>
</tr>
<tr>
<td>Housing Material</td>
<td>17-4SS</td>
<td>17-4SS</td>
</tr>
<tr>
<td>Diaphragm Material</td>
<td>17-4SS</td>
<td>17-4SS</td>
</tr>
<tr>
<td>Additional Accessories</td>
<td>090B</td>
<td>090B</td>
</tr>
</tbody>
</table>

Brass Calibration: Contact factory for assistance, requires customer supplied brass casings and conformal adaptor.

Mating Cable Connectors: EB | EB

Recommended Brass Cables: 003 | 003

Notes:
MODEL 118A07 - CHARGE MODE SHOT SHELL SENSOR

For production testing of shotshell ammunition per SAAMI recommendations, this upgraded sensor measures chamber pressure through the case wall of an unmodified cartridge. The number of rounds capability has increased due to a recently modified design.

Recommended Ballistic Peak Pressure Monitoring System

BALLISTIC SHOT SHELL PRESSURE SENSOR

MODEL 118A07

- Sensitivity (+15%): 0.28 pC/psi (0.041 pC/kPa)
- Measurement Range: 15000 psi (103400 kPa)
- Maximum Pressure: 35000 psi (241316 kPa)

FORCE & STRAIN PRODUCTS FOR STRUCTURAL IMPACT

FORCE & STRAIN PRODUCTS FOR STRUCTURAL IMPACT

ICP® QUARTZ FORCE RING FOR PERFORMANCE APPLICATIONS

SERIES 201B

- Sensitivity: 50 to 1 mV/lb (112.41 to 0.2248 mV/N)
- Measurement Range: 100 to 5000 lb (444.8 to 22.24 kN)
- Low Frequency Response (-5%): 0.003 to 0.0003 Hz

GENERAL PURPOSE QUARTZ FORCE SENSORS

SERIES 208C

- Sensitivity: 500 - 1 mV/lb (1124.1 - 0.2248 mV/N)
- Measurement Range: 10 - 5000 lb (44.5 - 22.24 kN)
- Low Frequency Response (-5%): 0.0003 to 0.01 Hz

APPLICATIONS:

- Crash Testing
- Crushing
- Drop Testing
- Fatigue Testing
- Fracture Testing
- Materials Testing
- Penetration Testing
- Dynamic Tension & Compression
- Impact & Repetitive Applications
- Drop Testing
- Materials Testing
MODEL 740B02 - DYNAMIC ICP® STRAIN SENSORS

Structured with a quartz sensing element and microelectronic circuitry in a low-profile titanium housing, this sensor is ideal for high-resolution measurements of dynamic strain. This unit is compatible with PCB’s ICP® Sensor signal conditioners and is capable of driving long cables. Typical applications include: active vibration control, noise-path analysis, modal testing, and use on aircraft and marine hulls, composite materials, and “smart” structures.

This product is CE-marking compliant to European Union EMC Directive, based upon conformance testing to the following European norms:

• EN 50081-1: 1992 Emissions
• EN 50082-1: 1992 Immunity

HIGHLIGHTS:

■ Measures small strain on top of large static loads
■ Provides high resolution and wide dynamic range
■ Designed with low profile and integral cable
■ Contains built-in microelectronic circuitry
■ Detects wave propagation for material velocity characterization

TYPICAL APPLICATION:

An epoxy-bonded Model 740B02 Strain Sensor provides a control signal for an actively damped flexible robot manipulator, illustrated above. The electronic controller, with vibration feedback from the strain sensor, provides a signal to the amplifier, such that vibration amplitude is minimized. The active control system permits rapid settling time for a step rotation of the manipulator arm.

ICP® PIEZOELECTRIC STRAIN SENSOR

MODEL 740B02

■ Sensitivity (±20%): 50 mV/με
■ Measurement Range: 0 to 120000 psi (552000 kPa)
■ Maximum Pressure: 125 kpsi (862000 kPa)

ICP® PIEZOELECTRIC STRAIN SENSOR

MODEL 740M04

■ Sensitivity (±20%): 5 mV/με
■ Measurement Range: 0 to 120000 psi (552000 kPa)
■ Maximum Pressure: 125 kpsi (862000 kPa)
For any testing in which the environmental operating conditions of a transducer vary with time and/or location, several requirements must be fulfilled before measurement uncertainty analysis is justified. Included among the requirements are good measurement system design practices, such as adequate low- and high-frequency response and data-sampling rates, appropriate anti-aliasing filter selection, proper grounding and shielding, and much more.

In addition to these requirements, data validation must be performed to establish that each transducer responds only to the environmental stimulus for which it is intended. For piezoelectric and piezoresistive transducers, “placebo” (IEST-RP-DTE011.1) transducers enable data validation to be accomplished. The referenced IEST standard defines a placebo transducer as ‘identical to a “live” unit in every parameter except for mechanical sensitivities.’ The placebo transducer should respond only to extraneous “environmental factors.” Ideally, its output would be zero. Any signal output from it would indicate that signals from the “live” transducers could be corrupted.

Every transducer responds to its environment in every way it can. For example, accelerometer specifications include their response to thermal, acoustic, strain, and radiation stimuli, to name a few. While accelerometers must have their response to acoustic pressure specified, pressure transducers must have their response to acceleration specified. Thus, one transducer’s desired response becomes another’s undesired response.

These undesired responses can cause a change in transducer sensitivity or can result in additive, spurious signals at the transducer’s output attributable to thermoelectric, electromagnetic, triboelectric and other self-generating noise phenomena. Since the test or instrumentation engineer has the best understanding of the test environment, he/she becomes responsible for data validation. The transducer manufacturer can assist by supplying “placebo” transducers to support this validation process.
PRESSURE CALIBRATION SYSTEMS

In addition to the products listed below, PCB® is also able to perform a number of special calibration and testing services, upon request. These include acceleration sensitivity, ballistics firing range, cold gas shock tube, discharge time constant, temperature effects from -320 to +1000 °F (-196 to +535 °C), hydrostatic and hermeticity, mechanical shock, and PIND (Particle Impact Noise Detection).

LOW PRESSURE CALIBRATION SYSTEM
MODEL K9903C
- Maximum pressure: 1 MPa (150 psi)
- Pneumatic calibration media
- 'Step' pressure input
- 5 ms rise time
- Automated pressure controller

MEDIUM PRESSURE CALIBRATION SYSTEM
MODEL K9907C
- Maximum pressure: 6.9 MPa (1000 psi)
- Compressed air or industrial helium media
- 'Step' pressure input
- Fastest rise times using poppet valve mechanism

HIGH PRESSURE CALIBRATION SYSTEM
MODEL K9913C
- Maximum pressure: 103 MPa (15000 psi)
- Silicon oil media
- 'Impulse' pressure input
- 3 ms rise time with 7 ms pulse duration using drop mass

ULTRA HIGH PRESSURE CALIBRATION SYSTEM
MODEL K9905D
- Maximum pressure: 550 MPa (80000 psi)
- Hydraulic calibration media
- 'Step' pressure input
- Quasi-static method available for ballistics sensors and brass calibration
- SAAMI standard brass calibration

INSTRUMENTED SHOCK TUBE
MODEL K9901C
- Enables high frequency resonant frequency measurement
- High speed time of arrival measurements
- Operates with compressed air or inert gas
- Max burst pressure 9.6 MPa (1400 psi)
MODEL 9155D - ACCELEROMETER CALIBRATION WORKSTATION

The Accelerometer Calibration Workstation Model 9155D is a turnkey solution that provides all the necessary components out of the box. Principal components include a Windows® PC Controller, software, printer and 24-bit data acquisition card. System options allow custom configuration of the modular system with a variety of shakers and shock towers, accelerometer signal conditioning, test software modules and mounting accessories.

The system often includes the 9155D-830 or 9155D-831 air bearing shaker. With our air bearing shakers, customers benefit from two things: PCB’s R&D investment in precision metrology and years of experience on PCB’s accelerometer production line. The real world experience these shakers have in our factory results in a mature design that has been ‘hardened’ for durability and optimized for usability.

HIGHLIGHTS:
- Wide frequency range of 0.1 Hz to 20 kHz
- Resonant frequency testing up to 50 kHz
- Drastically reduces uncertainty by virtually eliminating transverse motion
- Integral quartz ICP® reference for long-term stability
- Lorentz force coil enables rapid centering of sensors with varying mass

MODEL K9525C - SHOCK ACCELEROMETER CALIBRATION WORKSTATION

The PneuShock™ Model K9525C is a turnkey calibration solution for shock accelerometers. Shocks pulses are created at accelerations from 20 g to 10000 g using a pneumatically operated projectile to strike an anvil and excite the sensor. By controlling both the level and the duration of the air pressure applied, the user gains greater control and consistency of the impacts. PneuShock provides verification and linearity check. We also offer Model 9155D-525 as an optional module for the 9155D Accelerometer Calibration Workstation.

HIGHLIGHTS:
- Amplitude linearity calibration of shock and crash sensors from 20 g to 10000 g, per ISO 16062-22
- Controlled and consistent impacts using state-of-the-art pneumatically
- Easy refinement of impulse shape and frequency content using a wide variety of impact anvils
- Superior impact control through drive pressure and duration control
MODEL LXT1-QPR
TYPE 1 SOUND LEVEL METER
FIREARMS DETECTION SYSTEMS

Model LxT1-QPR handheld sound level meter features a small, lightweight ergonomic design, available real-time 1/1 and 1/3 octave frequency analysis, and comes standard with a 100dB dynamic range and a 377C10 microphone for measuring 178 dB typical. When configured with PCB Models 377C01 or 377A12 1/4” microphones, the system can safely measure high level acoustic signatures typically associated with gun-fire.

A full line of accessories is available including software, sound level calibrators, outdoor microphone systems, weatherproof enclosures for short and long-term monitoring and a variety of tripods and mounting hardware. For complete specifications on Model LxT1-QPR, please visit Larson Davis at http://www.larsondavis.com/Products/soundlevelmeters/modelxlxt1qpr.

DB LIMIT (1/4” MICROPHONE)

- 377C01 = 168dB
- 377A12 = 182dB

MODEL 444A53: BALLISTIC PEAK PRESSURE MONITORING SYSTEM

The Model 444A53 is a modular-style signal conditioner that combines a dual-mode amplifier module (443B102), a peak voltage monitoring module (444A152), and an AC power supply module (444A191) into one, integrated device. The unit connects directly with an ICP® or charge output pressure sensor, normalizes sensor sensitivity, and displays peak transient measurement signals in voltage or pressure units.

Unlike a digitizing peak detector, which is limited in accuracy by the sampling rate, the 444A152 peak monitoring module captures the true peak voltage of the transient event. Additionally, the module incorporates a 20 kHz low pass filter, offers reset capability between events, and delivers an analog output signal to profile the entire pressure event.

This device is ideal for barrel chamber pressure testing, lot testing of ammunition, and cartridge load studies. Two alternative versions (Models 444A51 and 444A52) eliminate the dual mode amplifier module and are intended for direct connection to ICP® pressure sensors, any direct voltage input, or for existing systems that already utilize a separate charge amplifier.

SPECIFICATIONS

Model 444A53

Performance

Channels 1
Input Sensor Type (selectable) ICP®, charge, voltage
Input Sensitivity Adjustment (normalization) 0.001 to 9999 (pC or mV per unit)
Excitation Supplied (ICP® mode) 24 VDC @ 0 to 20 mA
Voltage Gain (ICP® or voltage mode) 0.1 to 1000
Charge Converter (charge mode) 0.1 to 10000 nC/V
Charge Input Limit 100000 pC
Shift (long DTC mode) +0.05 V/µsec
Discharge Time Constant (selectable) 0.18, 1.8, 10, 100, 1000, >100000 sec
Peak / DVM Display 4-digit LCD
Peak Voltage Display Range (infinite hold) ± 10 V
Accuracy ± 1%

Display Mode Peak, DVM, Bias Test (for ICP® sensors)
Rise Time <1 µsec
Low Pass Filter 20 kHz
Peak Reset Manual, Remote, or Auto (1 to 99 sec)

Environmental
Temperature Range +32 to +120 °F
0 to +50 °C

Electrical
Power Required 100 to 240 VAC, 50 to 60 Hz
Ratings (2 Form C each with HI or LOW setpoint) 1 @ 120V, 1/2 @ 125 VAC

Physical
Size (h x w x d) 6.2 x 6.06 x 10.2 in
157.5 x 153.9 x 259.1 mm
Electrical Connectors (input, peak/DVM output, analog output, remote reset) BNC Jack
SIGNAL CONDITIONING & CONVERTERS

PCB® SIGNAL CONDITIONING

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 482C05
- Sensor Input Type(s): ICP®, Voltage
- Channels: 4
- Frequency Range (-5%): 0.1 to >1000 kHz

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 483C28
- Sensor Input Type(s): ICP®, Voltage, Bridge/Differential
- Channels: 8
- Frequency Range (-5%): 0.05 to 100000 Hz

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 482C16
- Sensor Input Type(s): ICP®, Voltage
- Channels: 4
- Frequency Range (-5%): 0.05 to 100000 Hz

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 482C64
- Sensor Input Type(s): ICP®, Voltage, Charge
- Channels: 4
- Frequency Range (-5%): 0.05 to 75000 Hz

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 482C27
- Sensor Input Type(s): ICP®, Voltage, Bridge/Differential
- Channels: 4
- Frequency Range (-5%): 0.05 to 100000 Hz

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 482C27
- Sensor Input Type(s): ICP®, Voltage
- Channels: 4
- Frequency Range (-5%): 0.05 to 75000 Hz

LINE POWERED, ICP® SIGNAL CONDITIONER
MODEL 482C27
- Sensor Input Type(s): ICP®, Voltage
- Channels: 4
- Frequency Range (-5%): 0.05 to 100000 Hz

BATTERY-POWERED, ICP® SENSOR SIGNAL CONDITIONER
MODEL 480C02
- Sensor Input Type(s): ICP®, Voltage
- Channels: 4
- Frequency Range (-5%): 0.05 to 100000 Hz

BATTERY-POWERED, ICP® SENSOR SIGNAL CONDITIONER
MODEL 480B21
- Sensor Input Type(s): ICP®, Voltage
- Channels: 3
- Frequency Range (-5%): 0.05 to 100000 Hz

BATTERY-POWERED, ICP® SENSOR SIGNAL CONDITIONER
MODEL 480E09
- Sensor Input Type(s): ICP®, Voltage
- Channels: 4
- Frequency Range (-5%): 0.05 to 100000 Hz

BATTERY-POWERED, ICP® SENSOR SIGNAL CONDITIONER
MODEL 480B21
- Sensor Input Type(s): ICP®, Voltage
- Channels: 3
- Frequency Range (-5%): 0.05 to 100000 Hz
SERIES 402 IMPEDANCE CONVERTERS
AND IN-LINE VOLTAGE FOLLOWER AMPLIFIER

Series 402A In-line voltage follower amplifiers, similar to the Series 422E charge converters, serve to convert charge output sensor signals to low-impedance voltage signals. They are recommended for applications requiring high frequency response up to 1 MHz, and for applications where sensor output (pC/unit) exceeds the maximum input range (pC) allowed in the Series 422E.

The voltage sensitivity, V, of a system including a charge output sensor, low-noise cable and voltage follower amplifier can be determined mathematically by the equation \(V = \frac{Q}{C} \) where Q is the charge sensitivity of the sensor in Coulombs and C is the total system capacitance in Farads. The total system capacitance is the result of the sum of the capacitance of the sensor, the capacitance of the interconnect cable, and the input capacitance of the voltage amplifier. Choose a voltage follower amplifier with an input capacitance that provides the sensitivity desired, while keeping the total output voltage (range x sensitivity) within the \(\pm 10 \) volt limit. Voltage follower amplifiers do not invert the polarity of the measurement signal.

IN-LINE VOLTAGE FOLLOWER AMPLIFIERS
MODEL 402A
- Input Capacitance: < 8.0 pF
- Discharge Time Constant: 1.0 second
- Frequency Response (± 5%): 0.5 to 1 MHz

IN-LINE VOLTAGE FOLLOWER AMPLIFIERS
MODEL 402A02
- Input Capacitance: 100 ± 10% pF
- Discharge Time Constant: 10 second
- Frequency Response (± 5%): 0.05 to 1 MHz

IN-LINE VOLTAGE FOLLOWER AMPLIFIERS
MODEL 402A03
- Input Capacitance: 1000 ± 10% pF
- Discharge Time Constant: 100 second
- Frequency Response (± 5%): 0.005 to 1 MHz

SERIES 422 IN LINE ICP POWERED CHARGE CONVERTERS

IN-LINE CHARGE CONVERTER
MODEL 422E52
- Sensitivity (Charge Conversion) (±2.5%): 10 mV/pC
- Output Voltage: ±5.0 V
- Temperature Range (Operating): -65 to +250 °F (-54 to +121 °C)

IN-LINE CHARGE CONVERTER
MODEL 422E51
- Sensitivity (±5.0%): 100 mV/pC
- Output Voltage: ±5.0 V
- Temperature Range: -65 to +250 °F (-54 to +121 °C)

IN-LINE CHARGE CONVERTER
MODEL 422E35
- Sensitivity (±2%): 1 mV/pC
- Output Voltage: ±2.5 V
- Temperature Range: -65 to +250 °F (-54 to +121 °C)

IN-LINE CHARGE CONVERTER
MODEL 422E36
- Sensitivity (±2%): 10 mV/pC
- Output Voltage: ±2.5 V
- Temperature Range: -65 to +250 °F (-54 to +121 °C)

CABLES & ADAPTERS

4-CONDUCTOR CABLE ASSEMBLIES

034H	05 10 20 30 50	FEP, Lightweight	Mini 4-Socket Plug to (3) 10-32 Plugs
034K	05 10 20 30 50	FEP, Lightweight	Mini 4-Socket Plug to (3) BNC Plugs
078D	05 10 20 30 50	Polyurethane, Flexible	4-Socket Plug to 4-Socket Plug
010D	05 10 15 20 25 30	FEP, General Purpose	4-Socket Plug to 4-Socket Plug
010F	05 10 15 20 25 30	FEP, General Purpose	4-Socket Plug to (3) 10-32 Plugs
034A	05 10 20 30 50	FEP, General Purpose	4-Socket Plug to 4-Socket Plug
078G	05 10 15 20 25 30 50	Polyurethane, Flexible	4-Socket Plug to (3) BNC Plugs
010G	05 10 15 20 25 30	FEP, General Purpose	4-Socket Plug to (3) BNC Plugs
034G	05 10 20 30 50	Silicone, Flexible	4-Socket Plug to (3) BNC Plugs

4-CONDUCTOR CABLE ASSEMBLIES

034D	05 10 20 30 50	Polyurethane, Flexible	4-Socket Plug to 4-Socket Plug
010F	05 10 15 20 25 30	FEP, General Purpose	4-Socket Plug to (3) 10-32 Plugs
034D	05 10 20 30 50	Polyurethane, Flexible	4-Socket Plug to 4-Socket Plug
078D	05 10 15 20 25 30	Polyurethane, Flexible	4-Socket Plug to (3) BNC Plugs
010F	05 10 15 20 25 30	FEP, General Purpose	4-Socket Plug to (3) BNC Plugs
4-CONDUCTOR CABLE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>010</th>
<th>024</th>
<th>019</th>
<th>036</th>
<th>078</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Style</td>
<td>General Purpose</td>
<td>Low Noise</td>
<td>Flexible Lightweight</td>
<td>Flexible</td>
<td>Flexible</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-130 to +392 °F</td>
<td>-130 to +392 °F</td>
<td>-60 to +200 °C</td>
<td>-60 to +200 °C</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>18 pF/ft</td>
<td>18 pF/ft</td>
<td>15 pF/ft</td>
<td>15 pF/ft</td>
<td></td>
</tr>
<tr>
<td>Cable Jacket Material</td>
<td>FEP</td>
<td>FEP</td>
<td>Silicone</td>
<td>Silicone</td>
<td></td>
</tr>
<tr>
<td>Cable Jacket Diameter (inches)</td>
<td>0.11 in</td>
<td>0.077 in</td>
<td>0.070 in</td>
<td>0.119 in</td>
<td></td>
</tr>
<tr>
<td>2.54 mm</td>
<td>1.90 mm</td>
<td>1.17 mm</td>
<td>3.02 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COAXIAL CABLE ASSEMBLIES

Construct cable assembly model by combining base model with desired length, e.g., 002C10.

<table>
<thead>
<tr>
<th>Model</th>
<th>030A</th>
<th>030C</th>
<th>018G</th>
<th>003G</th>
<th>002P</th>
<th>003P</th>
<th>018C</th>
<th>030A</th>
<th>030C</th>
<th>018G</th>
<th>003G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembled</td>
<td></td>
</tr>
<tr>
<td>1 ft (0.3 m)</td>
<td></td>
</tr>
<tr>
<td>2 ft (0.6 m)</td>
<td></td>
</tr>
<tr>
<td>3 ft (0.9 m)</td>
<td></td>
</tr>
<tr>
<td>5 ft (1.5 m)</td>
<td></td>
</tr>
<tr>
<td>7.5 ft (2.3 m)</td>
<td></td>
</tr>
<tr>
<td>10 ft (3.0 m)</td>
<td></td>
</tr>
<tr>
<td>20 ft (6.1 m)</td>
<td></td>
</tr>
<tr>
<td>30 ft (9.1 m)</td>
<td></td>
</tr>
<tr>
<td>50 ft (15.2 m)</td>
<td></td>
</tr>
<tr>
<td>Model 023A10</td>
<td></td>
</tr>
<tr>
<td>Series 002C</td>
<td></td>
</tr>
<tr>
<td>Series 018C</td>
<td></td>
</tr>
</tbody>
</table>

COAXIAL CABLE ASSEMBLIES

<table>
<thead>
<tr>
<th>Series 012C</th>
<th>Series 003A</th>
<th>3-56 Plug</th>
<th>5-44 Plug</th>
<th>10-32 Plug</th>
<th>10-32 Jack</th>
<th>10-32 Plug</th>
<th>10-32 Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-56 Plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-44 Plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-32 Plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-32 Jack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-32 Plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-Socket Plug</th>
<th>2-Socket Plug</th>
<th>2-Socket Plug</th>
<th>2-Socket Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3 Plug</td>
<td>M3 Connector</td>
<td>M3 Plug</td>
<td>M3 Connector</td>
</tr>
<tr>
<td>2-Socket Plug</td>
<td>2-Socket Plug</td>
<td>2-Socket Plug</td>
<td>2-Socket Plug</td>
</tr>
<tr>
<td>2-Socket Plug</td>
<td>2-Socket Plug</td>
<td>2-Socket Plug</td>
<td>2-Socket Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
<tr>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
<td>10-32 Plug</td>
</tr>
</tbody>
</table>
HOW TO CONFIGURE CUSTOM CABLE MODELS

1. Choose the cable length format desired, either English (ft) or Metric (m) unit lengths.
2. Choose the desired raw cable type.
3. Choose desired sensor connector type.
4. Determine the cable length required in English (ft) or Metric (m) unit lengths.
5. Choose desired termination connector type.

Example: Model 003AK025AC defines a 25 ft, low-noise cable with right angle 10-32 plug sensor connector, BNC plug termination connector.

RAW CABLE TYPE

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Diameter</th>
<th>Max. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.079 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>003</td>
<td>0.068 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>004</td>
<td>0.054 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>005</td>
<td>0.042 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>006</td>
<td>0.038 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>007</td>
<td>0.032 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>008</td>
<td>0.030 in</td>
<td>250 °F 121 °C</td>
</tr>
</tbody>
</table>

HOW TO SELECT RAW CABLE TYPE

1. Choose the cable length format desired, either English (ft) or Metric (m) unit lengths.
2. Choose the desired raw cable type.
3. Choose desired sensor connector type.
4. Determine the cable length required in English (ft) or Metric (m) unit lengths.
5. Choose desired termination connector type.

Example: Model 003AK025AC defines a 25 ft, low-noise cable with right angle 10-32 plug sensor connector, BNC plug termination connector.

RAW CABLE TYPE

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Diameter</th>
<th>Max. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.079 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>003</td>
<td>0.068 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>004</td>
<td>0.054 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>005</td>
<td>0.042 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>006</td>
<td>0.038 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>007</td>
<td>0.032 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>008</td>
<td>0.030 in</td>
<td>250 °F 121 °C</td>
</tr>
</tbody>
</table>

HOW TO SELECT RAW CABLE TYPE

1. Choose the cable length format desired, either English (ft) or Metric (m) unit lengths.
2. Choose the desired raw cable type.
3. Choose desired sensor connector type.
4. Determine the cable length required in English (ft) or Metric (m) unit lengths.
5. Choose desired termination connector type.

Example: Model 003AK025AC defines a 25 ft, low-noise cable with right angle 10-32 plug sensor connector, BNC plug termination connector.

RAW CABLE TYPE

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Diameter</th>
<th>Max. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.079 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>003</td>
<td>0.068 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>004</td>
<td>0.054 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>005</td>
<td>0.042 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>006</td>
<td>0.038 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>007</td>
<td>0.032 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>008</td>
<td>0.030 in</td>
<td>250 °F 121 °C</td>
</tr>
</tbody>
</table>

HOW TO SELECT RAW CABLE TYPE

1. Choose the cable length format desired, either English (ft) or Metric (m) unit lengths.
2. Choose the desired raw cable type.
3. Choose desired sensor connector type.
4. Determine the cable length required in English (ft) or Metric (m) unit lengths.
5. Choose desired termination connector type.

Example: Model 003AK025AC defines a 25 ft, low-noise cable with right angle 10-32 plug sensor connector, BNC plug termination connector.

RAW CABLE TYPE

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Diameter</th>
<th>Max. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.079 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>003</td>
<td>0.068 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>004</td>
<td>0.054 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>005</td>
<td>0.042 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>006</td>
<td>0.038 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>007</td>
<td>0.032 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>008</td>
<td>0.030 in</td>
<td>250 °F 121 °C</td>
</tr>
</tbody>
</table>

HOW TO SELECT RAW CABLE TYPE

1. Choose the cable length format desired, either English (ft) or Metric (m) unit lengths.
2. Choose the desired raw cable type.
3. Choose desired sensor connector type.
4. Determine the cable length required in English (ft) or Metric (m) unit lengths.
5. Choose desired termination connector type.

Example: Model 003AK025AC defines a 25 ft, low-noise cable with right angle 10-32 plug sensor connector, BNC plug termination connector.

RAW CABLE TYPE

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Diameter</th>
<th>Max. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>0.079 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>003</td>
<td>0.068 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>004</td>
<td>0.054 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>005</td>
<td>0.042 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>006</td>
<td>0.038 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>007</td>
<td>0.032 in</td>
<td>250 °F 121 °C</td>
</tr>
<tr>
<td>008</td>
<td>0.030 in</td>
<td>250 °F 121 °C</td>
</tr>
</tbody>
</table>
Cable - Connector Compatibility Matrix

The following table provides compatibility information for cables and cable connectors. A “3” denotes compatibility of the connector type shown in the rows going down the table with the cable type of the intersecting column going across the table.

COAXIAL CUSTOM CABLE ASSEMBLIES

Custom Cable Assemblies

PCB® offers many standard cable assemblies, however, in the event that a standard cable assembly will not fulfill the requirements of the application, the ability to configure a custom cable assembly is offered. Start by ensuring compatibility of the connector type with the cable type desired from the chart below, and then configure the custom cable model number from the steps on the previous page.

<table>
<thead>
<tr>
<th>Cable</th>
<th>002</th>
<th>003</th>
<th>005</th>
<th>006</th>
<th>012</th>
<th>013</th>
<th>018</th>
<th>023</th>
<th>024</th>
<th>039</th>
<th>031</th>
<th>032</th>
<th>038</th>
<th>045</th>
<th>053</th>
<th>098</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>AB</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AK</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AL</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>BZ</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>BZ</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>DZ</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EH</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EN</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EJ</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HJ</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>JH</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>JK</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>JZ</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LA</td>
<td>✓</td>
</tr>
</tbody>
</table>

MULTI-CONDUCTOR CUSTOM CABLE ASSEMBLIES

Cable - Connector Compatibility Matrix

The following table provides compatibility information for cables and cable connectors. A “3” denotes compatibility of the connector type shown in the rows going down the table with the cable type of the intersecting column going across the table.

<table>
<thead>
<tr>
<th>Cable</th>
<th>010</th>
<th>019</th>
<th>034</th>
<th>036</th>
<th>037</th>
<th>078</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>AB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>BZ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>DZ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EJ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HJ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>JH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>JK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>JZ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
CABLE CONNECTORS

Max temp may be less depending on cable assembly

- **BNC JACK**
 - Model AB
 - Max temp: 329 °F (165 °C)

- **BNC PLUG**
 - Model AC
 - Max temp: 329 °F (165 °C)

- **5-44 COAXIAL PLUG**
 - Model AF
 - Right angle
 - Max temp: 329 °F (165 °C)

- **2-SOCKET MS3106 PLUG**
 - Model AG
 - Straight
 - With strain relief
 - Max temp: 257 °F (125 °C)

- **2-SOCKET MS3106 PLUG / SOLDER ADAPTOR**
 - Model AW
 - Straight, with wire locking hex
 - User repairable
 - Max temp 500 °F (260 °C)*

- **4-SOCKET MINI PLUG, 8-36 THREAD**
 - Model EH
 - For triaxial sensors
 - Max temp: 356 °F (180 °C)

- **4-SOCKET PLUG, 1/4-28 THREAD**
 - Model AW
 - Straight, with wire locking hex
 - Max temp: 325 °F (163 °C)

- **4-PIN JACK, 1/4-28 THREAD**
 - Model CA
 - Triaxial sensors
 - Max temp: 329 °F (165 °C)

- **10-32 COAXIAL PLUG**
 - Model AL
 - Straight
 - Max temp: 500 °F (260 °C)

- **10-32 COAXIAL JACK**
 - Model EL
 - Straight, o-ring seal, spring loaded
 - Max temp: 500 °F (260 °C)

- **10-32 COAXIAL PLUG**
 - Model AG
 - Straight, with wire locking hex
 - Max temp: 450 °F (232 °C)

- **2-SOCKET PLUG, 7/16-27 THREAD**
 - Model GP
 - High temperature
 - Max temp: 900 °F (482 °C)

- **10-32 COAXIAL PLUG**
 - Model AK
 - Right angle
 - Max temp: 329 °F (165 °C)

- **2-SOCKET MS3106 PLUG**
 - Model GP
 - For hardline cable
 - Max temp: 550 °F (288 °C)

- **4-SOCKET PLUG, 1/4-28 THREAD**
 - Model AW
 - For triaxial sensors
 - Max temp: 325 °F (163 °C)

- **2-SOCKET PLUG, 7/16-27 THREAD**
 - Model GN
 - High temperature
 - Max temp: 900 °F (482 °C)

- **PIGTAIL**
 - Model AD
 - Leads stripped and tinned
 - Max temp: 490 °F (254 °C)*

- **10-32 COAXIAL PLUG**
 - Model AG
 - Right angle
 - Max temp: 329 °F (165 °C)

- **3-56 COAXIAL PLUG**
 - Model AE
 - Straight
 - Max temp: 500 °F (260 °C)

- **4-SOCKET MINI PLUG**
 - Model EH
 - For triaxial capacitive accelerometers
 - Max temp: 275 °F (135 °C)

- **4-PIN JACK, 1/4-28 THREAD**
 - Model CA
 - Triaxial sensors
 - Max temp: 329 °F (165 °C)

- **3-56 COAXIAL PLUG**
 - Model AG
 - Straight
 - Max temp: 500 °F (260 °C)

- **M3 COAXIAL PLUG**
 - Model EP
 - For triaxial capacitive accelerometers
 - Max temp: 375 °F (191 °C)

- **2-SOCKET PLUG**
 - Model GA
 - For hardline cable
 - Max temp: 550 °F (288 °C)

- **2-SOCKET PLUG, 7/16-27 THREAD**
 - Model GN
 - High temperature
 - Max temp: 900 °F (482 °C)

- **PIGTAIL**
 - Model AD
 - Leads stripped and tinned
 - Max temp: 490 °F (254 °C)*

- **10-32 COAXIAL PLUG**
 - Model AK
 - Right angle
 - Max temp: 329 °F (165 °C)

- **2-PIN JACK**
 - Model GP
 - High temperature
 - Max temp: 900 °F (482 °C)
CONNECTOR ADAPTORS

SCOPE INPUT ADAPTER
MODEL 070A02
- 10-32 coaxial jack to BNC plug. For adapting BNC connectors for use with 10-32 coaxial plugs.

CABLE ADAPTER
MODEL 070A03
- 10-32 coaxial jack to BNC jack. Joins cables terminating in a BNC plug and a 10-32 coaxial plug.

BNC COUPLER
MODEL 070A12
- BNC jack to BNC jack. Joins two cables terminating in BNC plugs.

10-32 COAXIAL RIGHT ANGLE ADAPTOR
MODEL 070A20
- 10-32 coaxial jack to 10-32 coaxial plug. For use in confined locations. For ICP® sensors only.

CABLE ADAPTOR
MODEL 070A08
- 10-32 coaxial jack to BNC jack. Joins cables terminating in a BNC plug and a 10-32 coaxial plug.

BNC COUPLER
MODEL 070A12
- BNC jack to BNC jack. Joins two cables terminating in BNC plugs.

10-32 COAXIAL SHORTING CAP
MODEL 070A40
- Used to short charge output sensor connectors during storage and transportation.

10-32 COAXIAL CRIMP-ON CONNECTOR KIT
MODEL 070A20
- Includes 1 pin insertion tool, 1 sleeve-crimping tool, and 20 Model “EB” connectors with cable strain reliefs. (Wire stripper and soldering iron not included).

CONNECTOR ADAPTOR
MODEL 070A03
- 10-32 coaxial plug to BNC jack. Converts 10-32 connectors for use with BNC plugs. Do not use on sensor connectors.

SOLDER CONNECTOR ADAPTOR
MODEL 070A09
- 10-32 coaxial plug to solder terminals. Excellent for high-shock applications. User-repairable.

FEED-THRU ADAPTOR
MODEL 070A13
- 10-32 coaxial jack to BNC jack. Bulkhead connects BNC plug to 10-32 coaxial jack.
- 1/8 in max wall thickness 1/2 in mtg thd

PLASTIC PROTECTIVE CAP
MODEL 070A18
- Provides strain relief for solder connector adaptors, as well as protects 10-32 cable ends.

CONNECTOR TOOL
MODEL 070A25
- Used to install 076A05 screw-on type microdot connector.

10-32 COAXIAL PLUG
MODEL 070A05
- Microdot connector, screw-on type.

BNC T CONNECTOR
MODEL 070A11
- BNC plug to two BNC jacks. Used as a cable splitter.

10-32 HERMETIC FEED-THRU
MODEL 070A14
- 10-32 coaxial jack to 10-32 coaxial jack.
- 1/4 in max wall thickness 5/16-32 in mtg thd

10-32 COAXIAL PLUG
MODEL 070A05
- 10-32 coaxial jack to 10-32 coaxial plug. For use in confined locations. For ICP® sensors only.

10-32 COAXIAL SHORTING CAP
MODEL 070A40
- Used to short charge output sensor connectors during storage and transportation.

COAXIAL CONNECTOR
MODEL EB
- 10-32 crimp-on style coaxial connector. Requires tools contained in Model 070C31 kit.
PCB Piezotronics, Inc. is a designer and manufacturer of microphones, vibration, pressure, force, torque, load, and strain sensors, as well as the pioneer of ICP® technology used by design engineers and predictive maintenance professionals worldwide for test, measurement, monitoring, and control requirements in automotive, aerospace, industrial, R&D, military, educational, commercial, OEM applications, and more. With a worldwide customer support team, 24-hour SensorLine™, and a global distribution network, PCB® is committed to Total Customer Satisfaction. Visit www.pcb.com for more information. PCB Piezotronics, Inc. is a wholly owned subsidiary of MTS Systems Corporation. Additional information on MTS can be found at www.mts.com.

© 2019 PCB Piezotronics, Inc. In the interest of constant product improvement, specifications are subject to change without notice. PCB®, ICP®, Swiveler®, Modally Tuned®, and IMI® with associated logo are registered trademarks of PCB Piezotronics, Inc. in the United States. ICP® is a registered trademark of PCB Piezotronics Europe GmbH in Germany and other countries. SWIFT™ is a trademark of PCB Piezotronics, Inc. SensorLine™ is a service mark of PCB Piezotronics, Inc.