SENSORS FOR EXTREME TEMPERATURE AUTOMOTIVE TESTING
WHAT IS UHT-12™?

UHT-12™ is a new crystal designed for more accurate, lower noise measurements during large temperature variations. UHT-12™ technology reduces the effects of temperature variation. Pyroelectricity phenomenon may occur during large temperature fluctuations, generating “spikes” and disrupting behavior of the accelerometer and the test results. Accelerometers made with UHT-12™ technology have an improved data quality.

APPLICATIONS

Vibration testing of automotive exhaust, turbocharger and engine systems requires accelerometers that are designed to withstand very high temperatures. PCB’s accelerometers for research and development are manufactured from tough low mass materials such as titanium and Inconel, are hermetically sealed and have no moving parts.

The UHT-12™ family of accelerometers include Model 320C52, 320C53, 339B31, 339B32, 357A64, 356A73 339A30, 339A31, 339A32, 357E90, 357E91, 357E92, 357E93, 357B63, EX356A73 and EX611A00. Other products such as Series 115, 176 and TLD339A37 pressure sensors are also available.
HIGHLIGHTS
- Absence of pyroelectric noise spikes up to 1200 °F (649 °C)
- Sensitivity that remains more consistent over a wide temperature change
- Shear mode crystals isolated from base strain & transverse measurement errors
- Proprietary crystal technology comes sealed in a hermetic package and has proven reliable performance in hundreds of automotive powertrain NVH installations for research and monitoring

PCB® ACCELEROMETERS ARE AVAILABLE TO 1200 °F (650 °C)
- ICP® accelerometers available in single and triaxial versions to 356°F/180°C
- Charge output accelerometers for testing or continuous monitoring cover temperature ranges to 1200 °F (650 °C)
UHT-12™
CHARGE OUTPUT
ACCELEROMETERS

Testing of turbocharger, exhaust systems and catalytic converters requires an ultra high temperature sensor. These sensors are designed specifically for demanding automotive testing environments and feature integral hard line cables.

- Compact and electrically isolated, Series 357E9X
- Operate in temperatures up to 1200 °F (650 °C)
- Insensitive to extreme variation in temperature
EXTREME TEMPERATURE, DIFFERENTIAL CHARGE ACCELEROMETER
MODEL EX611A00
- Sensitivity: (±5%) 10.0 pC/g
- 2-pin MIL connector

CHARGE OUTPUT ACCELEROMETER, WITH UHT-12™SHEAR SENSING CRYSTAL
MODELS 357E92 & 357E93
- Sensitivity: (±10%) 2.3 pC/g
- Sensitive axis parallel to mounting screw direction

VERY HIGH TEMPERATURE, SINGLE-ENDED CHARGE TRIAXIAL ACCELEROMETER
SERIES 3741B
- Sensitivity: (±5%) 3.2 pC/g
- Hazardous area approved

VERY HIGH TEMPERATURE, SINGLE-ENDED CHARGE ACCELEROMETER
MODEL 357B63
- Sensitivity: (±10%) 0.53 pC/g
- 10-32 coaxial jack connector
LOW THERMAL COEFFICIENT ACCELEROMETERS FOR STABLE SENSITIVITY OVER A WIDE TEMPERATURE RANGE

PCB® single and triaxial ICP® accelerometers are designed with a low thermal coefficient, wide operating temperature range, and good broadband resolution, making them ideal for powertrain development and powertrain NVH applications and for any vibration measurement requiring tight control of amplitude sensitivity over a wide thermal gradient.

- Temperature coefficient as low as 0.005%/F (0.009%/C)
- Available in stud, adhesive and through hole configurations
- Measurement frequency to 10 kHz at +/- 5%
- Titanium housed and hermetically sealed
- ICP up to 356°F/180°C
TRIAXIAL ICP® ACCELEROMETER
MODEL 339A30 & MODEL 339A30/NC
- Sensitivity: (±10%) 10 mV/g
- Measurement Range: ±500 g pk
- Broadband Resolution: 0.008 g rms
- Model 339A30/NC does not include mating cable

TRIAXIAL ICP® ACCELEROMETER
MODEL 339A31 & 339A31/NC
- Sensitivity: (±10%) 10 mV/g
- Measurement Range: ±500 g pk
- Broadband Resolution: 0.008 g rms
- Model 339A31/NC does not include mating cable

TRIAXIAL ICP® ACCELEROMETER
MODEL 339A32 & 339A32/NC
- Sensitivity: (±10%) 10 mV/g
- Measurement Range: ±500 g pk
- Broadband Resolution: 0.003 g rms
- Model 339A32/NC does not include mating cable

ICP® ACCELEROMETER
MODELS 320C52 & 320C53
- Sensitivity: (±10%) 10 mV/g / (±20%) 1 mV/g
- Measurement Range: ±500 g pk / ±5000 g pk
- Broadband Resolution: 0.004 g rms / 0.04 g rms

QUARTZ SHEAR TRIAXIAL ICP® ACCELEROMETER
MODEL TLD339A34
- Sensitivity: (±10%) 50 mV/g (5.1 mV/(m/s²))
- Measurement Range: ±100 g pk (±980 m/s² pk)
- Electrical Connector: 1/4-28 4-Pin

QUARTZ SHEAR TRIAXIAL ICP® ACCELEROMETER
MODEL TLD339A36
- Sensitivity: (±10%) 10 mV/g (1.0 mV/(m/s²))
- Measurement Range: ±500 g pk (±4900 m/s² pk)
- Electrical Connector: 1/4-28 4-Pin
ACCESSORIES

CHARGE CONVERTERS
- Condition signals from charge output piezoelectric sensors
- Convert high impedance charge signals into low impedance voltage signals

IN-LINE CHARGE CONVERTER
MODEL 422E38
- Sensitivity: 0.1 mV/pC
- Input range: 25000 pC
- Low frequency (-5%): 5 Hz

IN-LINE CHARGE CONVERTER
MODEL 422E35
- Sensitivity: 1 mV/pC
- Input range: 2500 pC
- Low frequency (-5%): 5 Hz

IN-LINE CHARGE CONVERTER
MODEL 422E36
- Sensitivity: 10 mV/pC
- Input range: 250 pC
- Low frequency (-5%): 5 Hz
ICP® SIGNAL CONDITIONERS

- Operate with ICP® sensor signal conditioners or readout devices with an ICP® sensor input
- Maintain fixed charge conversion regardless of input capacitance

MODEL 422M182
- ICP® powered
- In-line differential charge converter
- Sensitivity: (±5%) 4 mV/pC
- 2-pin Mil input to BNC output

MODEL 482C05
- 4-channel
- Line-powered
- ICP® sensor signal conditioner
- BNC input/output conditioner

MODEL 482C16
- 4-channel
- Line-powered
- ICP® sensor signal conditioner
COMPLETE HIGH TEMPERATURE ACCELEROMETER LISTING

<table>
<thead>
<tr>
<th>Temp</th>
<th>Model</th>
</tr>
</thead>
</table>
| ≥ 325 to < 500 °F (162 °C < 260 °C) | 357C10
| | 357C10/NC |
| | 320C15 |
| | 320C18 |
| | 357A09 |
| | P357A09 |
| | TLD339A34 |
| | TLD339A36 |
| | 339A31* |
| | 339A32* |
| | HT356B01 |
| | HTJ356B01 |
| | 356A70 |
| | 356A71 |
| | 320C52 |
| | 320C53 |

| ≥ 500 to < 1200 °F (≥ 260 °C to < 650 °C) | 357B03
| | 357B06
| | 357B21
| | 357B04
| | 357B11
| | EX356A73*
| | EX600B1X*
| | 357A64
| | 357A63
| | 357C71
| | 357C72
| | 357C73
| | 357B81
| | 357A07/NC
| | 357B63
| | 357A100*
| | 357B69
| | 357B69/NC
| | 357B53
| | 357B61
| | 357B61/NC

| ≥ 1200 °F (≥ 650 °C) | 357E90
| | 357E91
| | 357E92
| | 357E93
| | EX611A20 |

*UHT-12™ sensing technology
MTS Sensors, a division of MTS Systems Corporation (NASDAQ: MTSC), vastly expanded its range of products and solutions after MTS acquired PCB Piezotronics, Inc. in July, 2016. PCB Piezotronics, Inc. is a designer and manufacturer of microphones, vibration, pressure, force, torque, load, and strain sensors, as well as the pioneer of ICP® technology used by design engineers and predictive maintenance professionals worldwide for test, measurement, monitoring, and control requirements in automotive, aerospace, industrial, R&D, military, educational, commercial, OEM applications, and more. With a worldwide customer support team, 24-hour SensorLine®SM, and a global distribution network, PCB® is committed to Total Customer Satisfaction. Visit www.pcb.com for more information. PCB Piezotronics, Inc. is a wholly owned subsidiary of MTS Systems Corporation. Additional information on MTS can be found at www.mts.com.

© 2019 PCB Piezotronics, Inc. In the interest of constant product improvement, specifications are subject to change without notice. PCB®, ICP®, Swiveler®, Modally Tuned®, and IMI® with associated logo are registered trademarks of PCB Piezotronics, Inc. in the United States. ICP® is a registered trademark of PCB Piezotronics Europe GmbH in Germany and other countries. SWIFT® is a trademark of PCB Piezotronics, Inc. SensorLine®SM is a service mark of PCB Piezotronics, Inc.