PERFORMANCE CHARACTERISTICS

OF PIEZOELECTRIC & PIEZORESISTIVE PRESSURE SENSORS FOR BLAST

Presented by Carmine Salzano, PCB Piezotronics, Inc.

Shock Waves⁽¹⁾

- Static overpressure is the transient differential pressure in the air blast relative to the existing ambient pressure just before shock wave arrival
- Measured using a flush surface mount pressure sensor on the ground, or a pencil probe in the free field

Pressure Sensor Location

In the free field, sensors should be located:

- Perpendicular to the incoming shock wave
- Away from disturbances in the blast front (e.g. fragmentation, reflecting surfaces)

Two Measurement Techniques

Quartz ICP® Piezoelectric Pressure Sensors

- High stiffness for fast rise time
- ICP® output for good signal quality and resolution to 0.7 mili-psi (5 Pa)
- See models below: PCB 137B, 102B, 113B

Series 137B pencil probe

Series 113B

Piezoresistive Silicon Pressure Sensors

- Fast response time to measure blast wave
- DC coupled with absolute pressure measurement capability
- 8530 are supplied with 4-pin electric connector for improved durability
- See models below: Endevco 8511AM8, 8530BM37, 8530CM37

8511AM8

8530BM37 & 8530BC37

PR and ICP® Comparison

Dynamic Range of a 50 psi sensor

- ICP® is 5000 mV FSO (ICP 113B28)
- PR is 225 mV FSO (MEMS 8510C-50)

Durability

- ICP[®] is hermetic with 20x over-range
- PR is epoxy sealed with 5x over-range

Static Accuracy

- ICP® is AC coupled, but long enough for shock wave impulse measurement
- PR is DC coupled, better for deflagration or cook-off testing

Transient Thermal Effects

All pressure transducers respond to thermal transients

- PR (MEMS) pressure transducers respond to thermal transients with non-symmetric changes in bridge resistance
 - Even though small, resistors diffused in silicon don't see the same temperature at the same time
 - Individual changes in each resistor (thermoresistive effect) result in unbalancing the bridge
 - Bulk silicon MEMS pressure transducers also respond to light (photovoltaic and photoresistive effects)
 - Black grease and a screen placed over the diaphragm blocks and delays radiant and convective heat transfer
 - Thermal compensation resistors do not satisfy this function in a measurement environment containing thermal transients
 - Good data can be obtained but it is challenging to acquire
- ICP® pressure sensors also experience thermal shock. See discussion in next panel.

Transient Shock Data Discussion⁽²⁾

- The ICP® and PR pressure sensor diaphragms were properly protected in chart 1 below, but there is still undershoot after the main impulse is it bad data?
- Undershoot is adiabatic expansion (partial vacuum), i.e., real data after shock wave passes
- A heat flux experiment was performed on ICP® Model 113B28 100 mV/psi PE sensor.
 Output in yellow shows negative undershoot.
- Transducer exposed to 4.77
 BTU/ft²sec heat flux for 18.72ms
- -2.5V output corresponds to 42% of full scale range
- A second experiment shows
 ICP® Model 113B28 PE sensor
 with black vinyl electrical tape

with black vinyl electrical tape exposed to 5.39 BTU/ft²sec heat flux for 18.8ms

■ A maximum output of -229 mV was recorded, corresponding to only 3.9% of full-scale range

Cable Frequency Limits(3)(4)

■ The RC time constant of the cable presents us with a first order low-pass filter

Consider PCB ICP® Model 113B28 100 mV/psi, 50 psi range

(Example f_{max} we desire is 60 KHz, sample at 106 S/s so f_{NY} is 500 KHz)

For ICP® sensors, the cable capacitance can introduce slew rate limitations at high frequencies and high voltages.

For 100 feet of coax at 30 pF/ft and 5V FS there is absolutely no cable limitation to be concerned with up to 60 KHz ($i_c = 6.5 \text{ mA}$)

Now consider Endevco 8510C-50 4.5 mV/psi, 50 psi range

(Example f_{max} we desire is 60 KHz, sample at 106 S/s so f_{mx} is 500 KHz)

For an RC circuit we have a time constant, τ = RC. The sensors -3dB freq in rad/sec is, ω -3dB = 1/ τ = 2 π f-3dB If ω c is divided by 2 π , the value of the filter cutoff frequency (fc) in Hz is [0.159/(RC)].

Case 1:

10 feet of cable at **15.9 pf/ft** = 159 pf (assume as shipped) $RC = 0.350 \times 10^{-6} sec$

 $\omega_{-3db} = 2.86 \times 10^6 \text{ rad/sec}$ $f_{-3db} = 455 \text{ KHz}$

 $_{-3db}$ = 435 KHz (<< 1 dB attenuated at 60 KHz) Attenuation at f_{NV} = 33%

Belden nonpaired #82418, 4-conductor cable

Case 2:

 $\omega_{-3db} = 0.159 \times 10^6 \text{ rad/sec}$

 $f_{-3db} = 25.3 \text{ KHz}$

 $.54 \times f_{-3db} = 13.6 \text{ KHz (so } >> 1 \text{ dB; [attenuation at 60 KHz is } \sim 69\%])$ Attenuation at $f_{NY} = 95\%$ (-26 dB)

Summary

Dynamic Range of a 50 psi sensor

■ ICP® is 5V FSO

Durability

■ ICP[®] is hermetic with very high over-range

Static Accuracy

 PR is DC coupled and referenced either to atmospheric pressure or vacuum (absolute)

Transient Thermal Effects

- PR for durations longer than 20 mili-seconds
- ICP® for shock waves

Cable Length Limits

- ICP® with higher current
- PR with amplifier in-line

PCB PIEZOTRONICS